亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Chats emerge as an effective user-friendly approach for information retrieval, and are successfully employed in many domains, such as customer service, healthcare, and finance. However, existing image retrieval approaches typically address the case of a single query-to-image round, and the use of chats for image retrieval has been mostly overlooked. In this work, we introduce ChatIR: a chat-based image retrieval system that engages in a conversation with the user to elicit information, in addition to an initial query, in order to clarify the user's search intent. Motivated by the capabilities of today's foundation models, we leverage Large Language Models to generate follow-up questions to an initial image description. These questions form a dialog with the user in order to retrieve the desired image from a large corpus. In this study, we explore the capabilities of such a system tested on a large dataset and reveal that engaging in a dialog yields significant gains in image retrieval. We start by building an evaluation pipeline from an existing manually generated dataset and explore different modules and training strategies for ChatIR. Our comparison includes strong baselines derived from related applications trained with Reinforcement Learning. Our system is capable of retrieving the target image from a pool of 50K images with over 78% success rate after 5 dialogue rounds, compared to 75% when questions are asked by humans, and 64% for a single shot text-to-image retrieval. Extensive evaluations reveal the strong capabilities and examine the limitations of CharIR under different settings. Project repository is available at //github.com/levymsn/ChatIR.

相關內容

從(cong)20世紀70年代開始,有關圖(tu)(tu)(tu)像(xiang)(xiang)檢(jian)索(suo)(suo)的(de)(de)研究就已(yi)開始,當時主要是基于(yu)文本(ben)的(de)(de)圖(tu)(tu)(tu)像(xiang)(xiang)檢(jian)索(suo)(suo)技(ji)(ji)(ji)(ji)術(Text-based Image Retrieval,簡稱TBIR),利(li)用文本(ben)描述(shu)的(de)(de)方式(shi)描述(shu)圖(tu)(tu)(tu)像(xiang)(xiang)的(de)(de)特征(zheng),如(ru)繪(hui)畫作品的(de)(de)作者、年代、流派、尺寸等。到90年代以后,出(chu)現(xian)了對(dui)圖(tu)(tu)(tu)像(xiang)(xiang)的(de)(de)內(nei)容語義,如(ru)圖(tu)(tu)(tu)像(xiang)(xiang)的(de)(de)顏(yan)色(se)、紋理、布局(ju)等進行分析和(he)檢(jian)索(suo)(suo)的(de)(de)圖(tu)(tu)(tu)像(xiang)(xiang)檢(jian)索(suo)(suo)技(ji)(ji)(ji)(ji)術,即基于(yu)內(nei)容的(de)(de)圖(tu)(tu)(tu)像(xiang)(xiang)檢(jian)索(suo)(suo)(Content-based Image Retrieval,簡稱CBIR)技(ji)(ji)(ji)(ji)術。CBIR屬于(yu)基于(yu)內(nei)容檢(jian)索(suo)(suo)(Content-based Retrieval,簡稱CBR)的(de)(de)一種,CBR中還包括(kuo)對(dui)動(dong)態視頻(pin)(pin)、音頻(pin)(pin)等其它形式(shi)多(duo)媒體信息的(de)(de)檢(jian)索(suo)(suo)技(ji)(ji)(ji)(ji)術。

知識薈萃

精品入門和進階教程(cheng)、論文和代碼整理等

更多

查(cha)看(kan)相關VIP內容、論(lun)文、資訊等

Recommender systems are widely used in various online services, with embedding-based models being particularly popular due to their expressiveness in representing complex signals. However, these models often lack interpretability, making them less reliable and transparent for both users and developers. With the emergence of large language models (LLMs), we find that their capabilities in language expression, knowledge-aware reasoning, and instruction following are exceptionally powerful. Based on this, we propose a new model interpretation approach for recommender systems, by using LLMs as surrogate models and learn to mimic and comprehend target recommender models. Specifically, we introduce three alignment methods: behavior alignment, intention alignment, and hybrid alignment. Behavior alignment operates in the language space, representing user preferences and item information as text to learn the recommendation model's behavior; intention alignment works in the latent space of the recommendation model, using user and item representations to understand the model's behavior; hybrid alignment combines both language and latent spaces for alignment training. To demonstrate the effectiveness of our methods, we conduct evaluation from two perspectives: alignment effect, and explanation generation ability on three public datasets. Experimental results indicate that our approach effectively enables LLMs to comprehend the patterns of recommendation models and generate highly credible recommendation explanations.

By opportunistically engaging mobile users (workers), mobile crowdsensing (MCS) networks have emerged as important approach to facilitate sharing of sensed/gathered data of heterogeneous mobile devices. To assign tasks among workers and ensure low overheads, a series of stable matching mechanisms is introduced in this paper, which are integrated into a novel hybrid service trading paradigm consisting of futures trading mode and spot trading mode to ensure seamless MCS service provisioning. In the futures trading mode, we determine a set of long-term workers for each task through an overbooking-enabled in-advance many-to-many matching (OIA3M) mechanism, while characterizing the associated risks under statistical analysis. In the spot trading mode, we investigate the impact of fluctuations in long-term workers' resources on the violation of service quality requirements of tasks, and formalize a spot trading mode for tasks with violated service quality requirements under practical budget constraints, where the task-worker mapping is carried out via onsite many-to-many matching (O3M) and onsite many-to-one matching (OMOM). We theoretically show that our proposed matching mechanisms satisfy stability, individual rationality, fairness and computational efficiency. Comprehensive evaluations also verify the satisfaction of these properties under practical network settings, while revealing commendable performance on running time, participators' interactions, and service quality.

Long document summarization systems are critical for domains with lengthy and jargonladen text, yet they present significant challenges to researchers and developers with limited computing resources. Existing solutions mainly focus on efficient attentions or divide-and-conquer strategies. The former reduces theoretical time complexity, but is still memory-heavy. The latter methods sacrifice global context, leading to uninformative and incoherent summaries. This work aims to leverage the memory-efficient nature of divide-and-conquer methods while preserving global context. Concretely, our framework AWESOME uses two novel mechanisms: (1) External memory mechanisms track previously encoded document segments and their corresponding summaries, to enhance global document understanding and summary coherence. (2) Global salient content is further identified beforehand to augment each document segment to support its summarization. Extensive experiments on diverse genres of text, including government reports, transcripts, scientific papers, and novels, show that AWESOME produces summaries with improved informativeness, faithfulness, and coherence than competitive baselines on longer documents, while having a smaller GPU memory footprint.

Personalized recommender systems aim to predict users' preferences for items. It has become an indispensable part of online services. Online social platforms enable users to form groups based on their common interests. The users' group participation on social platforms reveals their interests and can be utilized as side information to mitigate the data sparsity and cold-start problem in recommender systems. Users join different groups out of different interests. In this paper, we generate group representation from the user's interests and propose IGRec (Interest-based Group enhanced Recommendation) to utilize the group information accurately. It consists of four modules. (1) Interest disentangler via self-gating that disentangles users' interests from their initial embedding representation. (2) Interest aggregator that generates the interest-based group representation by Gumbel-Softmax aggregation on the group members' interests. (3) Interest-based group aggregation that fuses user's representation with the participated group representation. (4) A dual-trained rating prediction module to utilize both user-item and group-item interactions. We conduct extensive experiments on three publicly available datasets. Results show IGRec can effectively alleviate the data sparsity problem and enhance the recommender system with interest-based group representation. Experiments on the group recommendation task further show the informativeness of interest-based group representation.

Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.

Self-supervised learning methods are gaining increasing traction in computer vision due to their recent success in reducing the gap with supervised learning. In natural language processing (NLP) self-supervised learning and transformers are already the methods of choice. The recent literature suggests that the transformers are becoming increasingly popular also in computer vision. So far, the vision transformers have been shown to work well when pretrained either using a large scale supervised data or with some kind of co-supervision, e.g. in terms of teacher network. These supervised pretrained vision transformers achieve very good results in downstream tasks with minimal changes. In this work we investigate the merits of self-supervised learning for pretraining image/vision transformers and then using them for downstream classification tasks. We propose Self-supervised vIsion Transformers (SiT) and discuss several self-supervised training mechanisms to obtain a pretext model. The architectural flexibility of SiT allows us to use it as an autoencoder and work with multiple self-supervised tasks seamlessly. We show that a pretrained SiT can be finetuned for a downstream classification task on small scale datasets, consisting of a few thousand images rather than several millions. The proposed approach is evaluated on standard datasets using common protocols. The results demonstrate the strength of the transformers and their suitability for self-supervised learning. We outperformed existing self-supervised learning methods by large margin. We also observed that SiT is good for few shot learning and also showed that it is learning useful representation by simply training a linear classifier on top of the learned features from SiT. Pretraining, finetuning, and evaluation codes will be available under: //github.com/Sara-Ahmed/SiT.

Recommender systems exploit interaction history to estimate user preference, having been heavily used in a wide range of industry applications. However, static recommendation models are difficult to answer two important questions well due to inherent shortcomings: (a) What exactly does a user like? (b) Why does a user like an item? The shortcomings are due to the way that static models learn user preference, i.e., without explicit instructions and active feedback from users. The recent rise of conversational recommender systems (CRSs) changes this situation fundamentally. In a CRS, users and the system can dynamically communicate through natural language interactions, which provide unprecedented opportunities to explicitly obtain the exact preference of users. Considerable efforts, spread across disparate settings and applications, have been put into developing CRSs. Existing models, technologies, and evaluation methods for CRSs are far from mature. In this paper, we provide a systematic review of the techniques used in current CRSs. We summarize the key challenges of developing CRSs into five directions: (1) Question-based user preference elicitation. (2) Multi-turn conversational recommendation strategies. (3) Dialogue understanding and generation. (4) Exploitation-exploration trade-offs. (5) Evaluation and user simulation. These research directions involve multiple research fields like information retrieval (IR), natural language processing (NLP), and human-computer interaction (HCI). Based on these research directions, we discuss some future challenges and opportunities. We provide a road map for researchers from multiple communities to get started in this area. We hope this survey helps to identify and address challenges in CRSs and inspire future research.

Most existing knowledge graphs suffer from incompleteness, which can be alleviated by inferring missing links based on known facts. One popular way to accomplish this is to generate low-dimensional embeddings of entities and relations, and use these to make inferences. ConvE, a recently proposed approach, applies convolutional filters on 2D reshapings of entity and relation embeddings in order to capture rich interactions between their components. However, the number of interactions that ConvE can capture is limited. In this paper, we analyze how increasing the number of these interactions affects link prediction performance, and utilize our observations to propose InteractE. InteractE is based on three key ideas -- feature permutation, a novel feature reshaping, and circular convolution. Through extensive experiments, we find that InteractE outperforms state-of-the-art convolutional link prediction baselines on FB15k-237. Further, InteractE achieves an MRR score that is 9%, 7.5%, and 23% better than ConvE on the FB15k-237, WN18RR and YAGO3-10 datasets respectively. The results validate our central hypothesis -- that increasing feature interaction is beneficial to link prediction performance. We make the source code of InteractE available to encourage reproducible research.

The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.

Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.

北京阿比特科技有限公司