Subexponential parameterized algorithms are known for a wide range of natural problems on planar graphs, but the techniques are usually highly problem specific. The goal of this paper is to introduce a framework for obtaining $n^{O(\sqrt{k})}$ time algorithms for a family of graph modification problems that includes problems that can be seen as generalized cycle hitting problems. Our starting point is the Node Unique Label Cover problem (that is, given a CSP instance where each constraint is a permutation of values on two variables, the task is to delete $k$ variables to make the instance satisfiable). We introduce a variant of the problem where $k$ vertices have to be deleted such that every 2-connected component of the remaining instance is satisfiable. Then we extend the problem with cardinality constraints that restrict the number of times a certain value can be used (globally or within a 2-connected component of the solution). We show that there is an $n^{O(\sqrt{k})}$ time algorithm on planar graphs for any problem that can be formulated this way, which includes a large number of well-studied problems, for example, Odd Cycle Transversal, Subset Feedback Vertex Set, Group Feedback Vertex Set, Subset Group Feedback Vertex Set, Vertex Multiway Cut, and Component Order Connectivity. For those problems that admit appropriate (quasi)polynomial kernels (that increase the parameter only linearly and preserve planarity), our results immediately imply $2^{O(\sqrt{k}\cdot\operatorname{polylog}(k))}n^{O(1)}$ time parameterized algorithms on planar graphs. In particular, we use or adapt known kernelization results to obtain $2^{O(\sqrt{k}\cdot \operatorname{polylog}(k))} n^{O(1)}$ time (randomized) algorithms for Vertex Multiway Cut, Group Feedback Vertex Set, and Subset Feedback Vertex Set.
Motivated by the problem of online canonical correlation analysis, we propose the \emph{Stochastic Scaled-Gradient Descent} (SSGD) algorithm for minimizing the expectation of a stochastic function over a generic Riemannian manifold. SSGD generalizes the idea of projected stochastic gradient descent and allows the use of scaled stochastic gradients instead of stochastic gradients. In the special case of a spherical constraint, which arises in generalized eigenvector problems, we establish a nonasymptotic finite-sample bound of $\sqrt{1/T}$, and show that this rate is minimax optimal, up to a polylogarithmic factor of relevant parameters. On the asymptotic side, a novel trajectory-averaging argument allows us to achieve local asymptotic normality with a rate that matches that of Ruppert-Polyak-Juditsky averaging. We bring these ideas together in an application to online canonical correlation analysis, deriving, for the first time in the literature, an optimal one-time-scale algorithm with an explicit rate of local asymptotic convergence to normality. Numerical studies of canonical correlation analysis are also provided for synthetic data.
Iterative hard thresholding (IHT) has gained in popularity over the past decades in large-scale optimization. However, convergence properties of this method have only been explored recently in non-convex settings. In matrix completion, existing works often focus on the guarantee of global convergence of IHT via standard assumptions such as incoherence property and uniform sampling. While such analysis provides a global upper bound on the linear convergence rate, it does not describe the actual performance of IHT in practice. In this paper, we provide a novel insight into the local convergence of a specific variant of IHT for matrix completion. We uncover the exact linear rate of IHT in a closed-form expression and identify the region of convergence in which the algorithm is guaranteed to converge. Furthermore, we utilize random matrix theory to study the linear rate of convergence of IHTSVD for large-scale matrix completion. We find that asymptotically, the rate can be expressed in closed form in terms of the relative rank and the sampling rate. Finally, we present various numerical results to verify the aforementioned theoretical analysis.
Permutation polynomials over finite fields are an interesting and constantly active research subject of study for many years. They have important applications in areas of mathematics and engineering. In recent years, permutation binomials and permutation trinomials attract people's interests due to their simple algebraic forms. By reversely using Tu's method for the characterization of permutation polynomials with exponents of Niho type, we construct a class of permutation trinomials with coefficients 1 in this paper. As applications, two conjectures of [19] and a conjecture of [13] are all special cases of our result. To our knowledge, the construction method of permutation polynomials by polar decomposition in this paper is new. Moreover, we prove that in new class of permutation trinomials, there exists a permutation polynomial which is EA-inequivalent to known permutation polynomials for all m greater than or equal to 2. Also we give the explicit compositional inverses of the new permutation trinomials for a special case.
Mining maximal subgraphs with cohesive structures from a bipartite graph has been widely studied. One important cohesive structure on bipartite graphs is k-biplex, where each vertex on one side disconnects at most k vertices on the other side. In this paper, we study the maximal k-biplex enumeration problem which enumerates all maximal k-biplexes. Existing methods suffer from efficiency and/or scalability issues and have the time of waiting for the next output exponential w.r.t. the size of the input bipartite graph (i.e., an exponential delay). In this paper, we adopt a reverse search framework called bTraversal, which corresponds to a depth-first search (DFS) procedure on an implicit solution graph on top of all maximal k-biplexes. We then develop a series of techniques for improving and implementing this framework including (1) carefully selecting an initial solution to start DFS, (2) pruning the vast majority of links from the solution graph of bTraversal, and (3) implementing abstract procedures of the framework. The resulting algorithm is called iTraversal, which has its underlying solution graph significantly sparser than (around 0.1% of) that of bTraversal. Besides, iTraversal provides a guarantee of polynomial delay. Our experimental results on real and synthetic graphs, where the largest one contains more than one billion edges, show that our algorithm is up to four orders of magnitude faster than existing algorithms.
This paper proposes a Generalized Power Method (GPM) to tackle the problem of community detection and group synchronization simultaneously in a direct non-convex manner. Under the stochastic group block model (SGBM), theoretical analysis indicates that the algorithm is able to exactly recover the ground truth in $O(n\log^2n)$ time, sharply outperforming the benchmark method of semidefinite programming (SDP) in $O(n^{3.5})$ time. Moreover, a lower bound of parameters is given as a necessary condition for exact recovery of GPM. The new bound breaches the information-theoretic threshold for pure community detection under the stochastic block model (SBM), thus demonstrating the superiority of our simultaneous optimization algorithm over the trivial two-stage method which performs the two tasks in succession. We also conduct numerical experiments on GPM and SDP to evidence and complement our theoretical analysis.
This paper presents a novel methodology for fast simulation and analysis of transient heat transfer. The proposed methodology is suitable for real-time applications owing to (i) establishing the solution method from the viewpoint of computationally efficient explicit dynamics, (ii) proposing an element-level thermal load computation to eliminate the need for assembling global thermal stiffness, leading to (iii) an explicit formulation of nodal temperature computation to eliminate the need for iterations anywhere in the algorithm, (iv) pre-computing the constant matrices and simulation parameters to facilitate online calculation, and (v) utilising computationally efficient finite elements to efficiently obtain thermal responses in the spatial domain, all of which lead to a significant reduction in computation time for fast run-time simulation. The proposed fast explicit dynamics finite element algorithm (FED-FEM) employs nonlinear thermal material properties, such as temperature-dependent thermal conductivity and specific heat capacity, and nonlinear thermal boundary conditions, such as heat convection and radiation, to account for nonlinear characteristics of transient heat transfer. Simulations and comparison analyses demonstrate that not only can the proposed methodology handle isotropic, orthotropic, anisotropic and temperature-dependent thermal properties but also satisfy the standard patch tests and achieve good agreement with those of the commercial finite element analysis packages for numerical accuracy, for 3-D heat conduction, convection, radiation, and thermal gradient concentration problems. Furthermore, the proposed FED-FEM algorithm is computationally efficient and only consumes a small computation time, capable of achieving real-time computational performance, leading to a novel methodology suitable for real-time simulation and analysis of transient heat transfer.
Despite the recent success of graph neural networks (GNN), common architectures often exhibit significant limitations, including sensitivity to oversmoothing, long-range dependencies, and spurious edges, e.g., as can occur as a result of graph heterophily or adversarial attacks. To at least partially address these issues within a simple transparent framework, we consider a new family of GNN layers designed to mimic and integrate the update rules of two classical iterative algorithms, namely, proximal gradient descent and iterative reweighted least squares (IRLS). The former defines an extensible base GNN architecture that is immune to oversmoothing while nonetheless capturing long-range dependencies by allowing arbitrary propagation steps. In contrast, the latter produces a novel attention mechanism that is explicitly anchored to an underlying end-toend energy function, contributing stability with respect to edge uncertainty. When combined we obtain an extremely simple yet robust model that we evaluate across disparate scenarios including standardized benchmarks, adversarially-perturbated graphs, graphs with heterophily, and graphs involving long-range dependencies. In doing so, we compare against SOTA GNN approaches that have been explicitly designed for the respective task, achieving competitive or superior node classification accuracy.
Quantum hardware and quantum-inspired algorithms are becoming increasingly popular for combinatorial optimization. However, these algorithms may require careful hyperparameter tuning for each problem instance. We use a reinforcement learning agent in conjunction with a quantum-inspired algorithm to solve the Ising energy minimization problem, which is equivalent to the Maximum Cut problem. The agent controls the algorithm by tuning one of its parameters with the goal of improving recently seen solutions. We propose a new Rescaled Ranked Reward (R3) method that enables stable single-player version of self-play training that helps the agent to escape local optima. The training on any problem instance can be accelerated by applying transfer learning from an agent trained on randomly generated problems. Our approach allows sampling high-quality solutions to the Ising problem with high probability and outperforms both baseline heuristics and a black-box hyperparameter optimization approach.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.
In this paper we introduce a covariance framework for the analysis of EEG and MEG data that takes into account observed temporal stationarity on small time scales and trial-to-trial variations. We formulate a model for the covariance matrix, which is a Kronecker product of three components that correspond to space, time and epochs/trials, and consider maximum likelihood estimation of the unknown parameter values. An iterative algorithm that finds approximations of the maximum likelihood estimates is proposed. We perform a simulation study to assess the performance of the estimator and investigate the influence of different assumptions about the covariance factors on the estimated covariance matrix and on its components. Apart from that, we illustrate our method on real EEG and MEG data sets. The proposed covariance model is applicable in a variety of cases where spontaneous EEG or MEG acts as source of noise and realistic noise covariance estimates are needed for accurate dipole localization, such as in evoked activity studies, or where the properties of spontaneous EEG or MEG are themselves the topic of interest, such as in combined EEG/fMRI experiments in which the correlation between EEG and fMRI signals is investigated.