亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Diffusion models have risen as a powerful tool in robotics due to their flexibility and multi-modality. While some of these methods effectively address complex problems, they often depend heavily on inference-time obstacle detection and require additional equipment. Addressing these challenges, we present a method that, during inference time, simultaneously generates only reachable goals and plans motions that avoid obstacles, all from a single visual input. Central to our approach is the novel use of a collision-avoiding diffusion kernel for training. Through evaluations against behavior-cloning and classical diffusion models, our framework has proven its robustness. It is particularly effective in multi-modal environments, navigating toward goals and avoiding unreachable ones blocked by obstacles, while ensuring collision avoidance. Project Website: //sites.google.com/view/denoising-heat-inspired

相關內容

Advancements in technology, pilot shortages, and cost pressures are driving a trend towards single-pilot and even remote operations in aviation. Considering the extensive workload and huge risks associated with single-pilot operations, the development of a Virtual Co-Pilot (V-CoP) is expected to be a potential way to ensure aviation safety. This study proposes a V-CoP concept and explores how humans and virtual assistants can effectively collaborate. A preliminary case study is conducted to explore a critical role of V-CoP, namely automated quick procedures searching, using the multimodal large language model (LLM). The LLM-enabled V-CoP integrates the pilot instruction and real-time cockpit instrumental data to prompt applicable aviation manuals and operation procedures. The results showed that the LLM-enabled V-CoP achieved high accuracy in situational analysis and effective retrieval of procedure information. The results showed that the LLM-enabled V-CoP achieved high accuracy in situational analysis (90.5%) and effective retrieval of procedure information (86.5%). The proposed V-CoP is expected to provide a foundation for future virtual intelligent assistant development, improve the performance of single pilots, and reduce the risk of human errors in aviation.

Recent advancements in diffusion models have positioned them at the forefront of image generation. Despite their superior performance, diffusion models are not without drawbacks; they are characterized by complex architectures and substantial computational demands, resulting in significant latency due to their iterative sampling process. To mitigate these limitations, we introduce a dual approach involving model miniaturization and a reduction in sampling steps, aimed at significantly decreasing model latency. Our methodology leverages knowledge distillation to streamline the U-Net and image decoder architectures, and introduces an innovative one-step DM training technique that utilizes feature matching and score distillation. We present two models, SDXS-512 and SDXS-1024, achieving inference speeds of approximately 100 FPS (30x faster than SD v1.5) and 30 FP (60x faster than SDXL) on a single GPU, respectively. Moreover, our training approach offers promising applications in image-conditioned control, facilitating efficient image-to-image translation.

Force interaction is inevitable when robots face multiple operation scenarios. How to make the robot competent in force control for generalized operations such as multi-tasks still remains a challenging problem. Aiming at the reproducibility of interaction tasks and the lack of a generalized force control framework for multi-task scenarios, this paper proposes a novel hybrid control framework based on active admittance control with iterative learning parameters-tunning mechanism. The method adopts admittance control as the underlying algorithm to ensure flexibility, and iterative learning as the high-level algorithm to regulate the parameters of the admittance model. The whole algorithm has flexibility and learning ability, which is capable of achieving the goal of excellent versatility. Four representative interactive robot manipulation tasks are chosen to investigate the consistency and generalisability of the proposed method. Experiments are designed to verify the effectiveness of the whole framework, and an average of 98.21% and 91.52% improvement of RMSE is obtained relative to the traditional admittance control as well as the model-free adaptive control, respectively.

Incorporating a robotic manipulator into a wheel-legged robot enhances its agility and expands its potential for practical applications. However, the presence of potential instability and uncertainties presents additional challenges for control objectives. In this paper, we introduce an arm-constrained curriculum learning architecture to tackle the issues introduced by adding the manipulator. Firstly, we develop an arm-constrained reinforcement learning algorithm to ensure safety and stability in control performance. Additionally, to address discrepancies in reward settings between the arm and the base, we propose a reward-aware curriculum learning method. The policy is first trained in Isaac gym and transferred to the physical robot to do dynamic grasping tasks, including the door-opening task, fan-twitching task and the relay-baton-picking and following task. The results demonstrate that our proposed approach effectively controls the arm-equipped wheel-legged robot to master dynamic grasping skills, allowing it to chase and catch a moving object while in motion. The code can be found at //github.com/aCodeDog/legged-robots-manipulation. To view the supplemental video, please visit //youtu.be/sNXT-rwPNMM.

Performance models are instrumental for optimizing performance-sensitive code. When modeling the use of functional units of out-of-order x86-64 CPUs, data availability varies by the manufacturer: Instruction-to-port mappings for Intel's processors are available, whereas information for AMD's designs are lacking. The reason for this disparity is that standard techniques to infer exact port mappings require hardware performance counters that AMD does not provide. In this work, we modify the port mapping inference algorithm of the widely used uops.info project to not rely on Intel's performance counters. The modifications are based on a formal port mapping model with a counter-example-guided algorithm powered by an SMT solver. We investigate in how far AMD's processors comply with this model and where unexpected performance characteristics prevent an accurate port mapping. Our results provide valuable insights for creators of CPU performance models as well as for software developers who want to achieve peak performance on recent AMD CPUs.

We explore a spectral initialization method that plays a central role in contemporary research on signal estimation in nonconvex scenarios. In a noiseless phase retrieval framework, we precisely analyze the method's performance in the high-dimensional limit when sensing vectors follow a multivariate Gaussian distribution for two rotationally invariant models of the covariance matrix C. In the first model C is a projector on a lower dimensional space while in the second it is a Wishart matrix. Our analytical results extend the well-established case when C is the identity matrix. Our examination shows that the introduction of biased spatial directions leads to a substantial improvement in the spectral method's effectiveness, particularly when the number of measurements is less than the signal's dimension. This extension also consistently reveals a phase transition phenomenon dependent on the ratio between sample size and signal dimension. Surprisingly, both of these models share the same threshold value.

We propose a data-driven control method for systems with aleatoric uncertainty, for example, robot fleets with variations between agents. Our method leverages shared trajectory data to increase the robustness of the designed controller and thus facilitate transfer to new variations without the need for prior parameter and uncertainty estimations. In contrast to existing work on experience transfer for performance, our approach focuses on robustness and uses data collected from multiple realizations to guarantee generalization to unseen ones. Our method is based on scenario optimization combined with recent formulations for direct data-driven control. We derive lower bounds on the amount of data required to achieve quadratic stability for probabilistic systems with aleatoric uncertainty and demonstrate the benefits of our data-driven method through a numerical example. We find that the learned controllers generalize well to high variations in the dynamics even when based on only a few short open-loop trajectories. Robust experience transfer enables the design of safe and robust controllers that work out of the box without any additional learning during deployment.

Communication robots have the potential to contribute to effective human-XAI interaction as an interface that goes beyond textual or graphical explanations. One of their strengths is that they can use physical and vocal expressions to add detailed nuances to explanations. However, it is not clear how a robot can apply such expressions, or in particular, how we can develop a strategy to adaptively use such expressions depending on the task and user in dynamic interactions. To address this question, this paper proposes DynEmph, a method for a communication robot to decide where to emphasize XAI-generated explanations with physical expressions. It predicts the effect of emphasizing certain points on a user and aims to minimize the expected difference between predicted user decisions and AI-suggested ones. DynEmph features a strategy for deciding where to emphasize in a data-driven manner, relieving engineers from the need to manually design a strategy. We further conducted experiments to investigate how emphasis selection strategies affect the performance of user decisions. The results suggest that, while a naive strategy (emphasizing explanations for an AI's most probable class) does not necessarily work better, DynEmph effectively guides users to better decisions under the condition that the performance of the AI suggestion is high.

Traditional approaches to neuroevolution often start from scratch. This becomes prohibitively expensive in terms of computational and data requirements when targeting modern, deep neural networks. Using a warm start could be highly advantageous, e.g., using previously trained networks, potentially from different sources. This moreover enables leveraging the benefits of transfer learning (in particular vastly reduced training effort). However, recombining trained networks is non-trivial because architectures and feature representations typically differ. Consequently, a straightforward exchange of layers tends to lead to a performance breakdown. We overcome this by matching the layers of parent networks based on their connectivity, identifying potential crossover points. To correct for differing feature representations between these layers we employ stitching, which merges the networks by introducing new layers at crossover points. To train the merged network, only stitching layers need to be considered. New networks can then be created by selecting a subnetwork by choosing which stitching layers to (not) use. Assessing their performance is efficient as only their evaluation on data is required. We experimentally show that our approach enables finding networks that represent novel trade-offs between performance and computational cost, with some even dominating the original networks.

We consider the task of weakly supervised one-shot detection. In this task, we attempt to perform a detection task over a set of unseen classes, when training only using weak binary labels that indicate the existence of a class instance in a given example. The model is conditioned on a single exemplar of an unseen class and a target example that may or may not contain an instance of the same class as the exemplar. A similarity map is computed by using a Siamese neural network to map the exemplar and regions of the target example to a latent representation space and then computing cosine similarity scores between representations. An attention mechanism weights different regions in the target example, and enables learning of the one-shot detection task using the weaker labels alone. The model can be applied to detection tasks from different domains, including computer vision object detection. We evaluate our attention Siamese networks on a one-shot detection task from the audio domain, where it detects audio keywords in spoken utterances. Our model considerably outperforms a baseline approach and yields a 42.6% average precision for detection across 10 unseen classes. Moreover, architectural developments from computer vision object detection models such as a region proposal network can be incorporated into the model architecture, and results show that performance is expected to improve by doing so.

北京阿比特科技有限公司