亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The COVID-19 disease spreads swiftly, and nearly three months after the first positive case was confirmed in China, Coronavirus started to spread all over the United States. Some states and counties reported high number of positive cases and deaths, while some reported lower COVID-19 related cases and mortality. In this paper, the factors that could affect the risk of COVID-19 infection and mortality were analyzed in county level. An innovative method by using K-means clustering and several classification models is utilized to determine the most critical factors. Results showed that mean temperature, percent of people below poverty, percent of adults with obesity, air pressure, population density, wind speed, longitude, and percent of uninsured people were the most significant attributes

相關內容

Most governments employ a set of quasi-standard measures to fight COVID-19 including wearing masks, social distancing, virus testing, contact tracing, and vaccination. However, combining these measures into an efficient holistic pandemic response instrument is even more involved than anticipated. We argue that some non-trivial factors behind the varying effectiveness of these measures are selfish decision making and the differing national implementations of the response mechanism. In this paper, through simple games, we show the effect of individual incentives on the decisions made with respect to mask wearing, social distancing and vaccination, and how these may result in sub-optimal outcomes. We also demonstrate the responsibility of national authorities in designing these games properly regarding data transparency, the chosen policies and their influence on the preferred outcome. We promote a mechanism design approach: it is in the best interest of every government to carefully balance social good and response costs when implementing their respective pandemic response mechanism; moreover, there is no one-size-fits-all solution when designing an effective solution.

Entity resolution (ER), comprising record linkage and de-duplication, is the process of merging noisy databases in the absence of unique identifiers to remove duplicate entities. One major challenge of analysis with linked data is identifying a representative record among determined matches to pass to an inferential or predictive task, referred to as the \emph{downstream task}. Additionally, incorporating uncertainty from ER in the downstream task is critical to ensure proper inference. To bridge the gap between ER and the downstream task in an analysis pipeline, we propose five methods to choose a representative (or canonical) record from linked data, referred to as canonicalization. Our methods are scalable in the number of records, appropriate in general data scenarios, and provide natural error propagation via a Bayesian canonicalization stage. The proposed methodology is evaluated on three simulated data sets and one application -- determining the relationship between demographic information and party affiliation in voter registration data from the North Carolina State Board of Elections. We first perform Bayesian ER and evaluate our proposed methods for canonicalization before considering the downstream tasks of linear and logistic regression. Bayesian canonicalization methods are empirically shown to improve downstream inference in both settings through prediction and coverage.

Storage-efficient privacy-guaranteed learning is crucial due to enormous amounts of sensitive user data required for increasingly many learning tasks. We propose a framework for reducing the storage cost while at the same time providing privacy guarantees, without essential loss in the utility of the data for learning. Our method comprises noise injection followed by lossy compression. We show that, when appropriately matching the lossy compression to the distribution of the added noise, the compressed examples converge, in distribution, to that of the noise-free training data. In this sense, the utility of the data for learning is essentially maintained, while reducing storage and privacy leakage by quantifiable amounts. We present experimental results on the CelebA dataset for gender classification and find that our suggested pipeline delivers in practice on the promise of the theory: the individuals in the images are unrecognizable (or less recognizable, depending on the noise level), overall storage of the data is substantially reduced, with no essential loss of the classification accuracy. As an added bonus, our experiments suggest that our method yields a substantial boost to robustness in the face of adversarial test data.

As COVID-19 pandemic progresses, severe flu seasons may happen alongside an increase in cases in cases and death of COVID-19, causing severe burdens on health care resources and public safety. A consequence of a twindemic may be a mixture of two different infections in the same person at the same time, "flurona". Admist the raising trend of "flurona", forecasting both influenza outbreaks and COVID-19 waves in a timely manner is more urgent than ever, as accurate joint real-time tracking of the twindemic aids health organizations and policymakers in adequate preparation and decision making. Under the current pandemic, state-of-art influenza and COVID-19 forecasting models carry valuable domain information but face shortcomings under current complex disease dynamics, such as similarities in symptoms and public healthcare seeking patterns of the two diseases. Inspired by the inner-connection between influenza and COVID-19 activities, we propose ARGOX-Joint-Ensemble which allows us to combine historical influenza and COVID-19 disease forecasting models to a new ensemble framework that handles scenarios where flu and COVID co-exist. Our framework is able to emphasize learning from COVID-related or influenza signals, through a winner-takes-all ensemble fashion. Moreover, our experiments demonstrate that our approach is successful in adapting past influenza forecasting models to the current pandemic, while improving upon previous COVID-19 forecasting models, by steadily outperforming alternative benchmark methods, and remaining competitive with publicly available models.

Created by volunteers since 2004, OpenStreetMap (OSM) is a global geographic database available under an open access license and currently used by a multitude of actors worldwide. This chapter describes the role played by OSM during the early months (from January to July 2020) of the ongoing COVID-19 pandemic, which - in contrast to past disasters and epidemics - is a global event impacting both developed and developing countries. A large number of COVID-19-related OSM use cases were collected and grouped into a number of research frameworks which are analyzed separately: dashboards and services simply using OSM as a basemap, applications using raw OSM data, initiatives to collect new OSM data, imports of authoritative data into OSM, and traditional academic research on OSM in the COVID-19 response. The wealth of examples provided in the chapter, including an analysis of OSM tile usage in two countries (Italy and China) deeply affected in the earliest months of 2020, prove that OSM has been and still is heavily used to address the COVID-19 crisis, although with types and mechanisms that are often different depending on the affected area or country and the related communities.

The past decade witnesses a rapid development in the measurement and monitoring technologies for food science. Among these technologies, spectroscopy has been widely used for the analysis of food quality, safety, and nutritional properties. Due to the complexity of food systems and the lack of comprehensive predictive models, rapid and simple measurements to predict complex properties in food systems are largely missing. Machine Learning (ML) has shown great potential to improve classification and prediction of these properties. However, the barriers to collect large datasets for ML applications still persists. In this paper, we explore different approaches of data annotation and model training to improve data efficiency for ML applications. Specifically, we leverage Active Learning (AL) and Semi-Supervised Learning (SSL) and investigate four approaches: baseline passive learning, AL, SSL, and a hybrid of AL and SSL. To evaluate these approaches, we collect two spectroscopy datasets: predicting plasma dosage and detecting foodborne pathogen. Our experimental results show that, compared to the de facto passive learning approach, AL and SSL methods reduce the number of labeled samples by 50% and 25% for each ML application, respectively.

The appearance of a novel coronavirus in late 2019 radically changed the community of researchers working on coronaviruses since the 2002 SARS epidemic. In 2020, coronavirus-related publications grew by 20 times over the previous two years, with 130,000 more researchers publishing on related topics. The United States, the United Kingdom and China led dozens of nations working on coronavirus prior to the pandemic, but leadership consolidated among these three nations in 2020, which collectively accounted for 50% of all papers, garnering well more than 60% of citations. China took an early lead on COVID-19 research, but dropped rapidly in production and international participation through the year. Europe showed an opposite pattern, beginning slowly in publications but growing in contributions during the year. The share of internationally collaborative publications dropped from pre-pandemic rates; single-authored publications grew. For all nations, including China, the number of publications about COVID track closely with the outbreak of COVID-19 cases. Lower-income nations participate very little in COVID-19 research in 2020. Topic maps of internationally collaborative work show the rise of patient care and public health clusters, two topics that were largely absent from coronavirus research in the two years prior to 2020. Findings are consistent with global science as a self-organizing system operating on a reputation-based dynamic.

Minimizing cross-entropy over the softmax scores of a linear map composed with a high-capacity encoder is arguably the most popular choice for training neural networks on supervised learning tasks. However, recent works show that one can directly optimize the encoder instead, to obtain equally (or even more) discriminative representations via a supervised variant of a contrastive objective. In this work, we address the question whether there are fundamental differences in the sought-for representation geometry in the output space of the encoder at minimal loss. Specifically, we prove, under mild assumptions, that both losses attain their minimum once the representations of each class collapse to the vertices of a regular simplex, inscribed in a hypersphere. We provide empirical evidence that this configuration is attained in practice and that reaching a close-to-optimal state typically indicates good generalization performance. Yet, the two losses show remarkably different optimization behavior. The number of iterations required to perfectly fit to data scales superlinearly with the amount of randomly flipped labels for the supervised contrastive loss. This is in contrast to the approximately linear scaling previously reported for networks trained with cross-entropy.

Breast cancer remains a global challenge, causing over 1 million deaths globally in 2018. To achieve earlier breast cancer detection, screening x-ray mammography is recommended by health organizations worldwide and has been estimated to decrease breast cancer mortality by 20-40%. Nevertheless, significant false positive and false negative rates, as well as high interpretation costs, leave opportunities for improving quality and access. To address these limitations, there has been much recent interest in applying deep learning to mammography; however, obtaining large amounts of annotated data poses a challenge for training deep learning models for this purpose, as does ensuring generalization beyond the populations represented in the training dataset. Here, we present an annotation-efficient deep learning approach that 1) achieves state-of-the-art performance in mammogram classification, 2) successfully extends to digital breast tomosynthesis (DBT; "3D mammography"), 3) detects cancers in clinically-negative prior mammograms of cancer patients, 4) generalizes well to a population with low screening rates, and 5) outperforms five-out-of-five full-time breast imaging specialists by improving absolute sensitivity by an average of 14%. Our results demonstrate promise towards software that can improve the accuracy of and access to screening mammography worldwide.

This paper introduces a deep-learning based efficient classifier for common dermatological conditions, aimed at people without easy access to skin specialists. We report approximately 80% accuracy, in a situation where primary care doctors have attained 57% success rate, according to recent literature. The rationale of its design is centered on deploying and updating it on handheld devices in near future. Dermatological diseases are common in every population and have a wide spectrum in severity. With a shortage of dermatological expertise being observed in several countries, machine learning solutions can augment medical services and advise regarding existence of common diseases. The paper implements supervised classification of nine distinct conditions which have high occurrence in East Asian countries. Our current attempt establishes that deep learning based techniques are viable avenues for preliminary information to aid patients.

北京阿比特科技有限公司