亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Previous work has axiomatised the cardinality operation in relation algebras, which counts the number of edges of an unweighted graph. We generalise the cardinality axioms to Stone relation algebras, which model weighted graphs, and study the relationships between various axioms for cardinality. This results in simpler cardinality axioms also for relation algebras. We give sufficient conditions for the representability of Stone relation algebras and for Stone relation algebras to be relation algebras.

相關內容

Recent studies indicate that the noise characteristics of phasor measurement units (PMUs) can be more accurately described by non-Gaussian distributions. Consequently, estimation techniques based on Gaussian noise assumptions may produce poor results with PMU data. This paper considers the PMU based line parameter estimation (LPE) problem, and investigates the performance of four state-of-the-art techniques in solving this problem in presence of non-Gaussian measurement noise. The rigorous comparative analysis highlights the merits and demerits of each technique w.r.t. the LPE problem, and identifies conditions under which they are expected to give good results.

WhatsApp has become a pivotal communication tool in India, transcending cultural boundaries and deeply integrating into the nation's digital landscape. Meta's introduction of WhatsApp for Business aligns seamlessly with the platform's popularity, offering businesses a crucial tool. However, the monetization plans pose challenges, particularly for smaller businesses, in balancing revenue goals with accessibility. This study, employing discourse analysis, examines Meta's infrastructuring of WhatsApp in India, emphasizing the dynamic interplay of technological, social, and cultural dimensions. Consequently, it highlights potential power differences caused by the deployment of WhatsApp for Business followed by its gradual but significant modifications, encouraging scholars to investigate the implications and ethics of rapid technological changes, particularly for marginalized users.

We study the fair and truthful allocation of m divisible public items among n agents, each with distinct preferences for the items. To aggregate agents' preferences fairly, we follow the literature on the fair allocation of public goods and aim to find a core solution. For divisible items, a core solution always exists and can be calculated efficiently by maximizing the Nash welfare objective. However, such a solution is easily manipulated; agents might have incentives to misreport their preferences. To mitigate this, the current state-of-the-art finds an approximate core solution with high probability while ensuring approximate truthfulness. However, this approach has two main limitations. First, due to several approximations, the approximation error in the core could grow with n, resulting in a non-asymptotic core solution. This limitation is particularly significant as public-good allocation mechanisms are frequently applied in scenarios involving a large number of agents, such as the allocation of public tax funds for municipal projects. Second, implementing the current approach for practical applications proves to be a highly nontrivial task. To address these limitations, we introduce PPGA, a (differentially) Private Public-Good Allocation algorithm, and show that it attains asymptotic truthfulness and finds an asymptotic core solution with high probability. Additionally, to demonstrate the practical applicability of our algorithm, we implement PPGA and empirically study its properties using municipal participatory budgeting data.

To analyze the worst-case running time of branching algorithms, the majority of work in exponential time algorithms focuses on designing complicated branching rules over developing better analysis methods for simple algorithms. In the mid-$2000$s, Fomin et al. [2005] introduced measure & conquer, an advanced general analysis method, sparking widespread adoption for obtaining tighter worst-case running time upper bounds for many fundamental NP-complete problems. Yet, much potential in this direction remains untapped, as most subsequent work applied it without further advancement. Motivated by this, we present piecewise analysis, a new general method that analyzes the running time of branching algorithms. Our approach is to define a similarity ratio that divides instances into groups and then analyze the running time within each group separately. The similarity ratio is a scale between two parameters of an instance I. Instead of relying on a single measure and a single analysis for the whole instance space, our method allows to take advantage of different intrinsic properties of instances with different similarity ratios. To showcase its potential, we reanalyze two $17$-year-old algorithms from Fomin et al. [2007] that solve $4$-Coloring and #$3$-Coloring respectively. The original analysis in their paper gave running times of $O(1.7272^n)$ and $O(1.6262^n)$ respectively for these algorithms, our analysis improves these running times to $O(1.7215^n)$ and $O(1.6232^n)$. Among the two improvements, our new running time $O(1.7215^n)$ is the first improvement in the best known running time for the 4-Coloring problem since 2007.

This paper presents the results of a comprehensive empirical study of losses to arbitrageurs (following the formalization of loss-versus-rebalancing by [Milionis et al., 2022]) incurred by liquidity providers on automated market makers (AMMs). We show that those losses exceed the fees earned by liquidity providers across many of the largest AMM liquidity pools (on Uniswap). Remarkably, we also find that the Uniswap v2 pools are more profitable for passive LPs than their Uniswap v3 counterparts. We also investigate how arbitrage losses change with block times. As expected, arbitrage losses decrease when block production is faster. However, the rate of the decline varies significantly across different trading pairs. For instance, when comparing 100ms block times to Ethereum's current 12-second block times, the decrease in losses to arbitrageurs ranges between 20% to 70%, depending on the specific trading pair.

While artificial intelligence has the potential to process vast amounts of data, generate new insights, and unlock greater productivity, its widespread adoption may entail unforeseen consequences. We identify conditions under which AI, by reducing the cost of access to certain modes of knowledge, can paradoxically harm public understanding. While large language models are trained on vast amounts of diverse data, they naturally generate output towards the 'center' of the distribution. This is generally useful, but widespread reliance on recursive AI systems could lead to a process we define as "knowledge collapse", and argue this could harm innovation and the richness of human understanding and culture. However, unlike AI models that cannot choose what data they are trained on, humans may strategically seek out diverse forms of knowledge if they perceive them to be worthwhile. To investigate this, we provide a simple model in which a community of learners or innovators choose to use traditional methods or to rely on a discounted AI-assisted process and identify conditions under which knowledge collapse occurs. In our default model, a 20% discount on AI-generated content generates public beliefs 2.3 times further from the truth than when there is no discount. An empirical approach to measuring the distribution of LLM outputs is provided in theoretical terms and illustrated through a specific example comparing the diversity of outputs across different models and prompting styles. Finally, based on the results, we consider further research directions to counteract such outcomes.

Reasoning, a crucial ability for complex problem-solving, plays a pivotal role in various real-world settings such as negotiation, medical diagnosis, and criminal investigation. It serves as a fundamental methodology in the field of Artificial General Intelligence (AGI). With the ongoing development of foundation models, e.g., Large Language Models (LLMs), there is a growing interest in exploring their abilities in reasoning tasks. In this paper, we introduce seminal foundation models proposed or adaptable for reasoning, highlighting the latest advancements in various reasoning tasks, methods, and benchmarks. We then delve into the potential future directions behind the emergence of reasoning abilities within foundation models. We also discuss the relevance of multimodal learning, autonomous agents, and super alignment in the context of reasoning. By discussing these future research directions, we hope to inspire researchers in their exploration of this field, stimulate further advancements in reasoning with foundation models, and contribute to the development of AGI.

The concept of causality plays an important role in human cognition . In the past few decades, causal inference has been well developed in many fields, such as computer science, medicine, economics, and education. With the advancement of deep learning techniques, it has been increasingly used in causal inference against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective optimization functions to estimate counterfactual data unbiasedly based on the different optimization methods. This paper focuses on the survey of the deep causal models, and its core contributions are as follows: 1) we provide relevant metrics under multiple treatments and continuous-dose treatment; 2) we incorporate a comprehensive overview of deep causal models from both temporal development and method classification perspectives; 3) we assist a detailed and comprehensive classification and analysis of relevant datasets and source code.

Rishi Bommasani,Drew A. Hudson,Ehsan Adeli,Russ Altman,Simran Arora,Sydney von Arx,Michael S. Bernstein,Jeannette Bohg,Antoine Bosselut,Emma Brunskill,Erik Brynjolfsson,Shyamal Buch,Dallas Card,Rodrigo Castellon,Niladri Chatterji,Annie Chen,Kathleen Creel,Jared Quincy Davis,Dora Demszky,Chris Donahue,Moussa Doumbouya,Esin Durmus,Stefano Ermon,John Etchemendy,Kawin Ethayarajh,Li Fei-Fei,Chelsea Finn,Trevor Gale,Lauren Gillespie,Karan Goel,Noah Goodman,Shelby Grossman,Neel Guha,Tatsunori Hashimoto,Peter Henderson,John Hewitt,Daniel E. Ho,Jenny Hong,Kyle Hsu,Jing Huang,Thomas Icard,Saahil Jain,Dan Jurafsky,Pratyusha Kalluri,Siddharth Karamcheti,Geoff Keeling,Fereshte Khani,Omar Khattab,Pang Wei Kohd,Mark Krass,Ranjay Krishna,Rohith Kuditipudi,Ananya Kumar,Faisal Ladhak,Mina Lee,Tony Lee,Jure Leskovec,Isabelle Levent,Xiang Lisa Li,Xuechen Li,Tengyu Ma,Ali Malik,Christopher D. Manning,Suvir Mirchandani,Eric Mitchell,Zanele Munyikwa,Suraj Nair,Avanika Narayan,Deepak Narayanan,Ben Newman,Allen Nie,Juan Carlos Niebles,Hamed Nilforoshan,Julian Nyarko,Giray Ogut,Laurel Orr,Isabel Papadimitriou,Joon Sung Park,Chris Piech,Eva Portelance,Christopher Potts,Aditi Raghunathan,Rob Reich,Hongyu Ren,Frieda Rong,Yusuf Roohani,Camilo Ruiz,Jack Ryan,Christopher Ré,Dorsa Sadigh,Shiori Sagawa,Keshav Santhanam,Andy Shih,Krishnan Srinivasan,Alex Tamkin,Rohan Taori,Armin W. Thomas,Florian Tramèr,Rose E. Wang,William Wang,Bohan Wu,Jiajun Wu,Yuhuai Wu,Sang Michael Xie,Michihiro Yasunaga,Jiaxuan You,Matei Zaharia,Michael Zhang,Tianyi Zhang,Xikun Zhang,Yuhui Zhang,Lucia Zheng,Kaitlyn Zhou,Percy Liang
Rishi Bommasani,Drew A. Hudson,Ehsan Adeli,Russ Altman,Simran Arora,Sydney von Arx,Michael S. Bernstein,Jeannette Bohg,Antoine Bosselut,Emma Brunskill,Erik Brynjolfsson,Shyamal Buch,Dallas Card,Rodrigo Castellon,Niladri Chatterji,Annie Chen,Kathleen Creel,Jared Quincy Davis,Dora Demszky,Chris Donahue,Moussa Doumbouya,Esin Durmus,Stefano Ermon,John Etchemendy,Kawin Ethayarajh,Li Fei-Fei,Chelsea Finn,Trevor Gale,Lauren Gillespie,Karan Goel,Noah Goodman,Shelby Grossman,Neel Guha,Tatsunori Hashimoto,Peter Henderson,John Hewitt,Daniel E. Ho,Jenny Hong,Kyle Hsu,Jing Huang,Thomas Icard,Saahil Jain,Dan Jurafsky,Pratyusha Kalluri,Siddharth Karamcheti,Geoff Keeling,Fereshte Khani,Omar Khattab,Pang Wei Kohd,Mark Krass,Ranjay Krishna,Rohith Kuditipudi,Ananya Kumar,Faisal Ladhak,Mina Lee,Tony Lee,Jure Leskovec,Isabelle Levent,Xiang Lisa Li,Xuechen Li,Tengyu Ma,Ali Malik,Christopher D. Manning,Suvir Mirchandani,Eric Mitchell,Zanele Munyikwa,Suraj Nair,Avanika Narayan,Deepak Narayanan,Ben Newman,Allen Nie,Juan Carlos Niebles,Hamed Nilforoshan,Julian Nyarko,Giray Ogut,Laurel Orr,Isabel Papadimitriou,Joon Sung Park,Chris Piech,Eva Portelance,Christopher Potts,Aditi Raghunathan,Rob Reich,Hongyu Ren,Frieda Rong,Yusuf Roohani,Camilo Ruiz,Jack Ryan,Christopher Ré,Dorsa Sadigh,Shiori Sagawa,Keshav Santhanam,Andy Shih,Krishnan Srinivasan,Alex Tamkin,Rohan Taori,Armin W. Thomas,Florian Tramèr,Rose E. Wang,William Wang,Bohan Wu,Jiajun Wu,Yuhuai Wu,Sang Michael Xie,Michihiro Yasunaga,Jiaxuan You,Matei Zaharia,Michael Zhang,Tianyi Zhang,Xikun Zhang,Yuhui Zhang,Lucia Zheng,Kaitlyn Zhou,Percy Liang

AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

北京阿比特科技有限公司