亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Some key issues in robust clustering are discussed with focus on Gaussian mixture model based clustering, namely the formal definition of outliers, ambiguity between groups of outliers and clusters, the interaction between robust clustering and the estimation of the number of clusters, the essential dependence of (not only) robust clustering on tuning decisions, and shortcomings of existing measurements of cluster stability when it comes to outliers.

相關內容

Multi-competitor races often feature complicated within-race strategies that are difficult to capture when training data on race outcome level data. Further, models which do not account for such strategic effects may suffer from confounded inferences and predictions. In this work we develop a general generative model for multi-competitor races which allows analysts to explicitly model certain strategic effects such as changing lanes or drafting and separate these impacts from competitor ability. The generative model allows one to simulate full races from any real or created starting position which opens new avenues for attributing value to within-race actions and to perform counter-factual analyses. This methodology is sufficiently general to apply to any track based multi-competitor races where both tracking data is available and competitor movement is well described by simultaneous forward and lateral movements. We apply this methodology to one-mile horse races using data provided by the New York Racing Association (NYRA) and the New York Thoroughbred Horsemen's Association (NYTHA) for the Big Data Derby 2022 Kaggle Competition. This data features granular tracking data for all horses at the frame-level (occurring at approximately 4hz). We demonstrate how this model can yield new inferences, such as the estimation of horse-specific speed profiles which vary over phases of the race, and examples of posterior predictive counterfactual simulations to answer questions of interest such as starting lane impacts on race outcomes.

A key challenge when trying to understand innovation is that it is a dynamic, ongoing process, which can be highly contingent on ephemeral factors such as culture, economics, or luck. This means that any analysis of the real-world process must necessarily be historical - and thus probably too late to be most useful - but also cannot be sure what the properties of the web of connections between innovations is or was. Here I try to address this by designing and generating a set of synthetic innovation web "dictionaries" that can be used to host sampled innovation timelines, probe the overall statistics and behaviours of these processes, and determine the degree of their reliance on the structure or generating algorithm. Thus, inspired by the work of Fink, Reeves, Palma and Farr (2017) on innovation in language, gastronomy, and technology, I study how new symbol discovery manifests itself in terms of additional "word" vocabulary being available from dictionaries generated from a finite number of symbols. Several distinct dictionary generation models are investigated using numerical simulation, with emphasis on the scaling of knowledge as dictionary generators and parameters are varied, and the role of which order the symbols are discovered in.

There has been significant progress in the study of sampling discretization of integral norms for both a designated finite-dimensional function space and a finite collection of such function spaces (universal discretization). Sampling discretization results turn out to be very useful in various applications, particularly in sampling recovery. Recent sampling discretization results typically provide existence of good sampling points for discretization. In this paper, we show that independent and identically distributed random points provide good universal discretization with high probability. Furthermore, we demonstrate that a simple greedy algorithm based on those points that are good for universal discretization provides excellent sparse recovery results in the square norm.

In this paper, we propose nonlocal diffusion models with Dirichlet boundary. These nonlocal diffusion models preserve the maximum principle and also have corresponding variational form. With these good properties, It is relatively easy to prove the well-posedness and the vanishing nonlocality convergence. Furthermore, by specifically designed weight function, we can get a nonlocal diffusion model with second order convergence which is optimal for nonlocal diffusion models.

Power posteriors "robustify" standard Bayesian inference by raising the likelihood to a constant fractional power, effectively downweighting its influence in the calculation of the posterior. Power posteriors have been shown to be more robust to model misspecification than standard posteriors in many settings. Previous work has shown that power posteriors derived from low-dimensional, parametric locally asymptotically normal models are asymptotically normal (Bernstein-von Mises) even under model misspecification. We extend these results to show that the power posterior moments converge to those of the limiting normal distribution suggested by the Bernstein-von Mises theorem. We then use this result to show that the mean of the power posterior, a point estimator, is asymptotically equivalent to the maximum likelihood estimator.

We introduce a general differentiable solver for time-dependent deformation problems with contact and friction. Our approach uses a finite element discretization with a high-order time integrator coupled with the recently proposed incremental potential contact method for handling contact and friction forces to solve PDE- and ODE-constrained optimization problems on scenes with a complex geometry. It support static and dynamic problems and differentiation with respect to all physical parameters involved in the physical problem description, which include shape, material parameters, friction parameters, and initial conditions. Our analytically derived adjoint formulation is efficient, with a small overhead (typically less than 10% for nonlinear problems) over the forward simulation, and shares many similarities with the forward problem, allowing the reuse of large parts of existing forward simulator code. We implement our approach on top of the open-source PolyFEM library, and demonstrate the applicability of our solver to shape design, initial condition optimization, and material estimation on both simulated results and in physical validations.

A recent body of work has demonstrated that Transformer embeddings can be linearly decomposed into well-defined sums of factors, that can in turn be related to specific network inputs or components. There is however still a dearth of work studying whether these mathematical reformulations are empirically meaningful. In the present work, we study representations from machine-translation decoders using two of such embedding decomposition methods. Our results indicate that, while decomposition-derived indicators effectively correlate with model performance, variation across different runs suggests a more nuanced take on this question. The high variability of our measurements indicate that geometry reflects model-specific characteristics more than it does sentence-specific computations, and that similar training conditions do not guarantee similar vector spaces.

Computational platforms for high-performance scientific applications are becoming more heterogenous, including hardware accelerators such as multiple GPUs. Applications in a wide variety of scientific fields require an efficient and careful management of the computational resources of this type of hardware to obtain the best possible performance. However, there are currently different GPU vendors, architectures and families that can be found in heterogeneous clusters or machines. Programming with the vendor provided languages or frameworks, and optimizing for specific devices, may become cumbersome and compromise portability to other systems. To overcome this problem, several proposals for high-level heterogeneous programming have appeared, trying to reduce the development effort and increase functional and performance portability, specifically when using GPU hardware accelerators. This paper evaluates the SYCL programming model, using the Open SYCL compiler, from two different perspectives: The performance it offers when dealing with single or multiple GPU devices from the same or different vendors, and the development effort required to implement the code. We use as case of study the Finite Time Lyapunov Exponent calculation over two real-world scenarios and compare the performance and the development effort of its Open SYCL-based version against the equivalent versions that use CUDA or HIP. Based on the experimental results, we observe that the use of SYCL does not lead to a remarkable overhead in terms of the GPU kernels execution time. In general terms, the Open SYCL development effort for the host code is lower than that observed with CUDA or HIP. Moreover, the SYCL version can take advantage of both CUDA and AMD GPU devices simultaneously much easier than directly using the vendor-specific programming solutions.

Graph-centric artificial intelligence (graph AI) has achieved remarkable success in modeling interacting systems prevalent in nature, from dynamical systems in biology to particle physics. The increasing heterogeneity of data calls for graph neural architectures that can combine multiple inductive biases. However, combining data from various sources is challenging because appropriate inductive bias may vary by data modality. Multimodal learning methods fuse multiple data modalities while leveraging cross-modal dependencies to address this challenge. Here, we survey 140 studies in graph-centric AI and realize that diverse data types are increasingly brought together using graphs and fed into sophisticated multimodal models. These models stratify into image-, language-, and knowledge-grounded multimodal learning. We put forward an algorithmic blueprint for multimodal graph learning based on this categorization. The blueprint serves as a way to group state-of-the-art architectures that treat multimodal data by choosing appropriately four different components. This effort can pave the way for standardizing the design of sophisticated multimodal architectures for highly complex real-world problems.

Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.

北京阿比特科技有限公司