Scalable surrogate models enable efficient emulation of computer models (or simulators), particularly when dealing with large ensembles of runs. While Gaussian Process (GP) models are commonly employed for emulation, they face limitations in scaling to truly large datasets. Furthermore, when dealing with dense functional output, such as spatial or time-series data, additional complexities arise, requiring careful handling to ensure fast emulation. This work presents a highly scalable emulator for functional data, building upon the works of Kennedy and O'Hagan (2001) and Higdon et al. (2008), while incorporating the local approximate Gaussian Process framework proposed by Gramacy and Apley (2015). The emulator utilizes global GP lengthscale parameter estimates to scale the input space, leading to a substantial improvement in prediction speed. We demonstrate that our fast approximation-based emulator can serve as a viable alternative to the methods outlined in Higdon et al. (2008) for functional response, while drastically reducing computational costs. The proposed emulator is applied to quickly calibrate the multiphysics continuum hydrodynamics simulator FLAG with a large ensemble of 20000 runs. The methods presented are implemented in the R package FlaGP.
The roadmap is organized into several thematic sections, outlining current computing challenges, discussing the neuromorphic computing approach, analyzing mature and currently utilized technologies, providing an overview of emerging technologies, addressing material challenges, exploring novel computing concepts, and finally examining the maturity level of emerging technologies while determining the next essential steps for their advancement.
We provide an algorithm for the simultaneous system identification and model predictive control of nonlinear systems. The algorithm has finite-time near-optimality guarantees and asymptotically converges to the optimal (non-causal) controller. Particularly, the algorithm enjoys sublinear dynamic regret, defined herein as the suboptimality against an optimal clairvoyant controller that knows how the unknown disturbances and system dynamics will adapt to its actions. The algorithm is self-supervised and applies to control-affine systems with unknown dynamics and disturbances that can be expressed in reproducing kernel Hilbert spaces. Such spaces can model external disturbances and modeling errors that can even be adaptive to the system's state and control input. For example, they can model wind and wave disturbances to aerial and marine vehicles, or inaccurate model parameters such as inertia of mechanical systems. The algorithm first generates random Fourier features that are used to approximate the unknown dynamics or disturbances. Then, it employs model predictive control based on the current learned model of the unknown dynamics (or disturbances). The model of the unknown dynamics is updated online using least squares based on the data collected while controlling the system. We validate our algorithm in both hardware experiments and physics-based simulations. The simulations include (i) a cart-pole aiming to maintain the pole upright despite inaccurate model parameters, and (ii) a quadrotor aiming to track reference trajectories despite unmodeled aerodynamic drag effects. The hardware experiments include a quadrotor aiming to track a circular trajectory despite unmodeled aerodynamic drag effects, ground effects, and wind disturbances.
There has been a large number of studies in interpretable and explainable ML for cybersecurity, in particular, for intrusion detection. Many of these studies have significant amount of overlapping and repeated evaluations and analysis. At the same time, these studies overlook crucial model, data, learning process, and utility related issues and many times completely disregard them. These issues include the use of overly complex and opaque ML models, unaccounted data imbalances and correlated features, inconsistent influential features across different explanation methods, the inconsistencies stemming from the constituents of a learning process, and the implausible utility of explanations. In this work, we empirically demonstrate these issues, analyze them and propose practical solutions in the context of feature-based model explanations. Specifically, we advise avoiding complex opaque models such as Deep Neural Networks and instead using interpretable ML models such as Decision Trees as the available intrusion datasets are not difficult for such interpretable models to classify successfully. Then, we bring attention to the binary classification metrics such as Matthews Correlation Coefficient (which are well-suited for imbalanced datasets. Moreover, we find that feature-based model explanations are most often inconsistent across different settings. In this respect, to further gauge the extent of inconsistencies, we introduce the notion of cross explanations which corroborates that the features that are determined to be impactful by one explanation method most often differ from those by another method. Furthermore, we show that strongly correlated data features and the constituents of a learning process, such as hyper-parameters and the optimization routine, become yet another source of inconsistent explanations. Finally, we discuss the utility of feature-based explanations.
A new method called the aggregated sure independence screening is proposed for the computational challenges in variable selection of interactions when the number of explanatory variables is much higher than the number of observations (i.e., $p\gg n$). In this problem, the two main challenges are the strong hierarchical restriction and the number of candidates for the main effects and interactions. If $n$ is a few hundred and $p$ is ten thousand, then the memory needed for the augmented matrix of the full model is more than $100{\rm GB}$ in size, beyond the memory capacity of a personal computer. This issue can be solved by our proposed method but not by our competitors. Two advantages are that the proposed method can include important interactions even if the related main effects are weak or absent, and it can be combined with an arbitrary variable selection method for interactions. The research addresses the main concern for variable selection of interactions because it makes previous methods applicable to the case when $p$ is extremely large.
A near-field wideband beamforming scheme is investigated for reconfigurable intelligent surface (RIS) assisted multiple-input multiple-output (MIMO) systems, in which a deep learning-based end-to-end (E2E) optimization framework is proposed to maximize the system spectral efficiency. To deal with the near-field double beam split effect, the base station is equipped with frequency-dependent hybrid precoding architecture by introducing sub-connected true time delay (TTD) units, while two specific RIS architectures, namely true time delay-based RIS (TTD-RIS) and virtual subarray-based RIS (SA-RIS), are exploited to realize the frequency-dependent passive beamforming at the RIS. Furthermore, the efficient E2E beamforming models without explicit channel state information are proposed, which jointly exploits the uplink channel training module and the downlink wideband beamforming module. In the proposed network architecture of the E2E models, the classical communication signal processing methods, i.e., polarized filtering and sparsity transform, are leveraged to develop a signal-guided beamforming network. Numerical results show that the proposed E2E models have superior beamforming performance and robustness to conventional beamforming benchmarks. Furthermore, the tradeoff between the beamforming gain and the hardware complexity is investigated for different frequency-dependent RIS architectures, in which the TTD-RIS can achieve better spectral efficiency than the SA-RIS while requiring additional energy consumption and hardware cost.
Generative modeling seeks to approximate the statistical properties of real data, enabling synthesis of new data that closely resembles the original distribution. Generative Adversarial Networks (GANs) and Denoising Diffusion Probabilistic Models (DDPMs) represent significant advancements in generative modeling, drawing inspiration from game theory and thermodynamics, respectively. Nevertheless, the exploration of generative modeling through the lens of biological evolution remains largely untapped. In this paper, we introduce a novel family of models termed Generative Cellular Automata (GeCA), inspired by the evolution of an organism from a single cell. GeCAs are evaluated as an effective augmentation tool for retinal disease classification across two imaging modalities: Fundus and Optical Coherence Tomography (OCT). In the context of OCT imaging, where data is scarce and the distribution of classes is inherently skewed, GeCA significantly boosts the performance of 11 different ophthalmological conditions, achieving a 12% increase in the average F1 score compared to conventional baselines. GeCAs outperform both diffusion methods that incorporate UNet or state-of-the art variants with transformer-based denoising models, under similar parameter constraints. Code is available at: //github.com/xmed-lab/GeCA.
We conduct a systematic study of the approximation properties of Transformer for sequence modeling with long, sparse and complicated memory. We investigate the mechanisms through which different components of Transformer, such as the dot-product self-attention, positional encoding and feed-forward layer, affect its expressive power, and we study their combined effects through establishing explicit approximation rates. Our study reveals the roles of critical parameters in the Transformer, such as the number of layers and the number of attention heads. These theoretical insights are validated experimentally and offer natural suggestions for alternative architectures.
The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.
Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.