亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a nonparametric and time-varying directed information graph (TV-DIG) framework to estimate the evolving causal structure in time series networks, thereby addressing the limitations of traditional econometric models in capturing high-dimensional, nonlinear, and time-varying interconnections among series. This framework employs an information-theoretic measure rooted in a generalized version of Granger-causality, which is applicable to both linear and nonlinear dynamics. Our framework offers advancements in measuring systemic risk and establishes meaningful connections with established econometric models, including vector autoregression and switching models. We evaluate the efficacy of our proposed model through simulation experiments and empirical analysis, reporting promising results in recovering simulated time-varying networks with nonlinear and multivariate structures. We apply this framework to identify and monitor the evolution of interconnectedness and systemic risk among major assets and industrial sectors within the financial network. We focus on cryptocurrencies' potential systemic risks to financial stability, including spillover effects on other sectors during crises like the COVID-19 pandemic and the Federal Reserve's 2020 emergency response. Our findings reveals significant, previously underrecognized pre-2020 influences of cryptocurrencies on certain financial sectors, highlighting their potential systemic risks and offering a systematic approach in tracking evolving cross-sector interactions within financial networks.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 白盒 · Performer · 情景 · Seven ·
2024 年 2 月 14 日

With the rapidly increasing application of large language models (LLMs), their abuse has caused many undesirable societal problems such as fake news, academic dishonesty, and information pollution. This makes AI-generated text (AIGT) detection of great importance. Among existing methods, white-box methods are generally superior to black-box methods in terms of performance and generalizability, but they require access to LLMs' internal states and are not applicable to black-box settings. In this paper, we propose to estimate word generation probabilities as pseudo white-box features via multiple re-sampling to help improve AIGT detection under the black-box setting. Specifically, we design POGER, a proxy-guided efficient re-sampling method, which selects a small subset of representative words (e.g., 10 words) for performing multiple re-sampling in black-box AIGT detection. Experiments on datasets containing texts from humans and seven LLMs show that POGER outperforms all baselines in macro F1 under black-box, partial white-box, and out-of-distribution settings and maintains lower re-sampling costs than its existing counterparts.

Few-shot object detection (FSOD) is a challenging problem aimed at detecting novel concepts from few exemplars. Existing approaches to FSOD all assume abundant base labels to adapt to novel objects. This paper studies the new task of semi-supervised FSOD by considering a realistic scenario in which both base and novel labels are simultaneously scarce. We explore the utility of unlabeled data within our proposed label-efficient detection framework and discover its remarkable ability to boost semi-supervised FSOD by way of region proposals. Motivated by this finding, we introduce SoftER Teacher, a robust detector combining pseudo-labeling with consistency learning on region proposals, to harness unlabeled data for improved FSOD without relying on abundant labels. Rigorous experiments show that SoftER Teacher surpasses the novel performance of a strong supervised detector using only 10% of required base labels, without catastrophic forgetting observed in prior approaches. Our work also sheds light on a potential relationship between semi-supervised and few-shot detection suggesting that a stronger semi-supervised detector leads to a more effective few-shot detector.

Extremely large-scale massive multiple-input multiple-output (XL-MIMO) systems introduce the much higher channel dimensionality and incur the additional near-field propagation effect, aggravating the computation load and the difficulty to acquire the prior knowledge for channel estimation. In this article, an XL-MIMO channel network (XLCNet) is developed to estimate the high-dimensional channel, which is a universal solution for both the near-field users and far-field users with different channel statistics. Furthermore, a compressed XLCNet (C-XLCNet) is designed via weight pruning and quantization to accelerate the model inference as well as to facilitate the model storage and transmission. Simulation results show the performance superiority and universality of XLCNet. Compared to XLCNet, C-XLCNet incurs the limited performance loss while reducing the computational complexity and model size by about $10 \times$ and $36 \times$, respectively.

This paper introduces a novel Perturbation-Assisted Inference (PAI) framework utilizing synthetic data generated by the Perturbation-Assisted Sample Synthesis (PASS) method. The framework focuses on uncertainty quantification in complex data scenarios, particularly involving unstructured data while utilizing deep learning models. On one hand, PASS employs a generative model to create synthetic data that closely mirrors raw data while preserving its rank properties through data perturbation, thereby enhancing data diversity and bolstering privacy. By incorporating knowledge transfer from large pre-trained generative models, PASS enhances estimation accuracy, yielding refined distributional estimates of various statistics via Monte Carlo experiments. On the other hand, PAI boasts its statistically guaranteed validity. In pivotal inference, it enables precise conclusions even without prior knowledge of the pivotal's distribution. In non-pivotal situations, we enhance the reliability of synthetic data generation by training it with an independent holdout sample. We demonstrate the effectiveness of PAI in advancing uncertainty quantification in complex, data-driven tasks by applying it to diverse areas such as image synthesis, sentiment word analysis, multimodal inference, and the construction of prediction intervals.

Despite recent improvements in audio-text modeling, audio-text contrastive models still lag behind their image-text counterparts in scale and performance. We propose a method to improve both the scale and the training of audio-text contrastive models. Specifically, we craft a large-scale audio-text dataset consisting of over 13,000 hours of text-labeled audio, aided by large language model (LLM) processing and audio captioning. Further, we employ an masked autoencoder (MAE) pre-pretraining phase with random patch dropout, which allows us to both scale unlabeled audio datasets and train efficiently with variable length audio. After MAE pre-pretraining of our audio encoder, we train a contrastive model with an auxiliary captioning objective. Our final model, which we name Cacophony, achieves state-of-the-art performance on audio-text retrieval tasks, and exhibits competitive results on other downstream tasks such as zero-shot classification.

Recent molecular communication (MC) research has integrated more detailed computational models to capture the dynamics of practical biophysical systems. This research focuses on developing realistic models for MC transceivers inspired by spheroids - three-dimensional cell aggregates commonly used in organ-on-chip experimental systems. Potential applications that can be used or modeled with spheroids include nutrient transport in an organ-on-chip system, the release of biomarkers or reception of drug molecules by a cancerous tumor site, or transceiver nanomachines participating in information exchange. In this paper, a simple diffusive MC system is considered where a spheroidal transmitter and receiver are in an unbounded fluid environment. These spheroidal antennas are modeled as porous media for diffusive signaling molecules, then their boundary conditions and effective diffusion coefficients are characterized. Further, for either a point source or spheroidal transmitter, Green's function for concentration (GFC) outside and inside the receiving spheroid is analytically derived and formulated in terms of an infinite series and confirmed by a particle-based simulator (PBS). The provided GFCs enable computation of the transmitted and received signals in the spheroidal communication system. This study shows that the porous structure of the receiving spheroid amplifies diffusion signals but also disperses them, thus there is a trade-off between porosity and information transmission rate. Also, the results reveal that the porous arrangement of the transmitting spheroid not only disperses the received signal but also attenuates it. System performance is also evaluated in terms of bit error rate (BER). Decreasing the porosity of the receiving spheroid is shown to enhance system performance. Conversely, reducing the porosity of the transmitting spheroid can adversely affect system performance.

Large language model (LLM) applications, such as ChatGPT, are a powerful tool for online information-seeking (IS) and problem-solving tasks. However, users still face challenges initializing and refining prompts, and their cognitive barriers and biased perceptions further impede task completion. These issues reflect broader challenges identified within the fields of IS and interactive information retrieval (IIR). To address these, our approach integrates task context and user perceptions into human-ChatGPT interactions through prompt engineering. We developed a ChatGPT-like platform integrated with supportive functions, including perception articulation, prompt suggestion, and conversation explanation. Our findings of a user study demonstrate that the supportive functions help users manage expectations, reduce cognitive loads, better refine prompts, and increase user engagement. This research enhances our comprehension of designing proactive and user-centric systems with LLMs. It offers insights into evaluating human-LLM interactions and emphasizes potential challenges for under served users.

Active learning (AL) aims to improve model performance within a fixed labeling budget by choosing the most informative data points to label. Existing AL focuses on the single-domain setting, where all data come from the same domain (e.g., the same dataset). However, many real-world tasks often involve multiple domains. For example, in visual recognition, it is often desirable to train an image classifier that works across different environments (e.g., different backgrounds), where images from each environment constitute one domain. Such a multi-domain AL setting is challenging for prior methods because they (1) ignore the similarity among different domains when assigning labeling budget and (2) fail to handle distribution shift of data across different domains. In this paper, we propose the first general method, dubbed composite active learning (CAL), for multi-domain AL. Our approach explicitly considers the domain-level and instance-level information in the problem; CAL first assigns domain-level budgets according to domain-level importance, which is estimated by optimizing an upper error bound that we develop; with the domain-level budgets, CAL then leverages a certain instance-level query strategy to select samples to label from each domain. Our theoretical analysis shows that our method achieves a better error bound compared to current AL methods. Our empirical results demonstrate that our approach significantly outperforms the state-of-the-art AL methods on both synthetic and real-world multi-domain datasets. Code is available at //github.com/Wang-ML-Lab/multi-domain-active-learning.

Causal Machine Learning (CausalML) is an umbrella term for machine learning methods that formalize the data-generation process as a structural causal model (SCM). This allows one to reason about the effects of changes to this process (i.e., interventions) and what would have happened in hindsight (i.e., counterfactuals). We categorize work in \causalml into five groups according to the problems they tackle: (1) causal supervised learning, (2) causal generative modeling, (3) causal explanations, (4) causal fairness, (5) causal reinforcement learning. For each category, we systematically compare its methods and point out open problems. Further, we review modality-specific applications in computer vision, natural language processing, and graph representation learning. Finally, we provide an overview of causal benchmarks and a critical discussion of the state of this nascent field, including recommendations for future work.

The difficulty of deploying various deep learning (DL) models on diverse DL hardwares has boosted the research and development of DL compilers in the community. Several DL compilers have been proposed from both industry and academia such as Tensorflow XLA and TVM. Similarly, the DL compilers take the DL models described in different DL frameworks as input, and then generate optimized codes for diverse DL hardwares as output. However, none of the existing survey has analyzed the unique design of the DL compilers comprehensively. In this paper, we perform a comprehensive survey of existing DL compilers by dissecting the commonly adopted design in details, with emphasis on the DL oriented multi-level IRs, and frontend/backend optimizations. Specifically, we provide a comprehensive comparison among existing DL compilers from various aspects. In addition, we present detailed analysis of the multi-level IR design and compiler optimization techniques. Finally, several insights are highlighted as the potential research directions of DL compiler. This is the first survey paper focusing on the unique design of DL compiler, which we hope can pave the road for future research towards the DL compiler.

北京阿比特科技有限公司