亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

E-commerce platforms rely on structured product descriptions, in the form of attribute/value pairs to enable features such as faceted product search and product comparison. However, vendors on these platforms often provide unstructured product descriptions consisting of a title and a textual description. To process such offers, e-commerce platforms must extract attribute/value pairs from the unstructured descriptions. State-of-the-art attribute/value extraction methods based on pre-trained language models (PLMs), such as BERT, face two drawbacks (i) the methods require significant amounts of task-specific training data and (ii) the fine-tuned models have problems to generalize to attribute values that were not part of the training data. We explore the potential of using large language models (LLMs) as a more training data-efficient and more robust alternative to existing attribute/value extraction methods. We propose different prompt templates for instructing LLMs about the target schema of the extraction, covering both zero-shot and few-shot scenarios. In the zero-shot scenario, textual and JSON-based approaches for representing information about the target attributes are compared. In the scenario with training data, we investigate (i) the provision of example attribute values, (ii) the selection of in-context demonstrations, (iii) shuffled ensembling to prevent position bias, and (iv) fine-tuning the LLM. The prompt templates are evaluated in combination with hosted LLMs, such as GPT-3.5 and GPT-4, and open-source LLMs based on Llama2 which can be run locally. The best average F1-score of 86% was reached by GPT-4 using an ensemble of shuffled prompts that combine attribute names, attribute descriptions, example values, and demonstrations. Given the same amount of training data, this prompt/model combination outperforms the best PLM baseline by an average of 6% F1.

相關內容

Randomized controlled trials (RCTs) serve as the cornerstone for understanding causal effects, yet extending inferences to target populations presents challenges due to effect heterogeneity and underrepresentation. Our paper addresses the critical issue of identifying and characterizing underrepresented subgroups in RCTs, proposing a novel framework for refining target populations to improve generalizability. We introduce an optimization-based approach, Rashomon Set of Optimal Trees (ROOT), to characterize underrepresented groups. ROOT optimizes the target subpopulation distribution by minimizing the variance of the target average treatment effect estimate, ensuring more precise treatment effect estimations. Notably, ROOT generates interpretable characteristics of the underrepresented population, aiding researchers in effective communication. Our approach demonstrates improved precision and interpretability compared to alternatives, as illustrated with synthetic data experiments. We apply our methodology to extend inferences from the Starting Treatment with Agonist Replacement Therapies (START) trial -- investigating the effectiveness of medication for opioid use disorder -- to the real-world population represented by the Treatment Episode Dataset: Admissions (TEDS-A). By refining target populations using ROOT, our framework offers a systematic approach to enhance decision-making accuracy and inform future trials in diverse populations.

Continuously-observed event occurrences, often exhibit self- and mutually-exciting effects, which can be well modeled using temporal point processes. Beyond that, these event dynamics may also change over time, with certain periodic trends. We propose a novel variational auto-encoder to capture such a mixture of temporal dynamics. More specifically, the whole time interval of the input sequence is partitioned into a set of sub-intervals. The event dynamics are assumed to be stationary within each sub-interval, but could be changing across those sub-intervals. In particular, we use a sequential latent variable model to learn a dependency graph between the observed dimensions, for each sub-interval. The model predicts the future event times, by using the learned dependency graph to remove the noncontributing influences of past events. By doing so, the proposed model demonstrates its higher accuracy in predicting inter-event times and event types for several real-world event sequences, compared with existing state of the art neural point processes.

The efficacy of machine learning has traditionally relied on the availability of increasingly larger datasets. However, large datasets pose storage challenges and contain non-influential samples, which could be ignored during training without impacting the final accuracy of the model. In response to these limitations, the concept of distilling the information on a dataset into a condensed set of (synthetic) samples, namely a distilled dataset, emerged. One crucial aspect is the selected architecture (usually ConvNet) for linking the original and synthetic datasets. However, the final accuracy is lower if the employed model architecture differs from the model used during distillation. Another challenge is the generation of high-resolution images, e.g., 128x128 and higher. In this paper, we propose Latent Dataset Distillation with Diffusion Models (LD3M) that combine diffusion in latent space with dataset distillation to tackle both challenges. LD3M incorporates a novel diffusion process tailored for dataset distillation, which improves the gradient norms for learning synthetic images. By adjusting the number of diffusion steps, LD3M also offers a straightforward way of controlling the trade-off between speed and accuracy. We evaluate our approach in several ImageNet subsets and for high-resolution images (128x128 and 256x256). As a result, LD3M consistently outperforms state-of-the-art distillation techniques by up to 4.8 p.p. and 4.2 p.p. for 1 and 10 images per class, respectively.

In many modern industrial scenarios, the measurements of the quality characteristics of interest are often required to be represented as functional data or profiles. This motivates the growing interest in extending traditional univariate statistical process monitoring (SPM) schemes to the functional data setting. This article proposes a new SPM scheme, which is referred to as adaptive multivariate functional EWMA (AMFEWMA), to extend the well-known exponentially weighted moving average (EWMA) control chart from the univariate scalar to the multivariate functional setting. The favorable performance of the AMFEWMA control chart over existing methods is assessed via an extensive Monte Carlo simulation. Its practical applicability is demonstrated through a case study in the monitoring of the quality of a resistance spot welding process in the automotive industry through the online observations of dynamic resistance curves, which are associated with multiple spot welds on the same car body and recognized as the full technological signature of the process.

In production rendering systems, caustics are typically rendered via photon mapping and gathering, a process often hindered by insufficient photon density. In this paper, we propose a novel photon guiding method to improve the photon density and overall quality for caustic rendering. The key insight of our approach is the application of a global 3D Gaussian mixture model, used in conjunction with an adaptive light sampler. This combination effectively guides photon emission in expansive 3D scenes with multiple light sources. By employing a global 3D Gaussian mixture, our method precisely models the distribution of the points of interest. To sample emission directions from the distribution at any observation point, we introduce a novel directional transform of the 3D Gaussian, which ensures accurate photon emission guiding. Furthermore, our method integrates a global light cluster tree, which models the contribution distribution of light sources to the image, facilitating effective light source selection. We conduct experiments demonstrating that our approach robustly outperforms existing photon guiding techniques across a variety of scenarios, significantly advancing the quality of caustic rendering.

Dense retrieval methods have demonstrated promising performance in multilingual information retrieval, where queries and documents can be in different languages. However, dense retrievers typically require a substantial amount of paired data, which poses even greater challenges in multilingual scenarios. This paper introduces UMR, an Unsupervised Multilingual dense Retriever trained without any paired data. Our approach leverages the sequence likelihood estimation capabilities of multilingual language models to acquire pseudo labels for training dense retrievers. We propose a two-stage framework which iteratively improves the performance of multilingual dense retrievers. Experimental results on two benchmark datasets show that UMR outperforms supervised baselines, showcasing the potential of training multilingual retrievers without paired data, thereby enhancing their practicality. Our source code, data, and models are publicly available at //github.com/MiuLab/UMR

Genetic programming (GP) has the potential to generate explainable results, especially when used for dimensionality reduction. In this research, we investigate the potential of leveraging eXplainable AI (XAI) and large language models (LLMs) like ChatGPT to improve the interpretability of GP-based non-linear dimensionality reduction. Our study introduces a novel XAI dashboard named GP4NLDR, the first approach to combine state-of-the-art GP with an LLM-powered chatbot to provide comprehensive, user-centred explanations. We showcase the system's ability to provide intuitive and insightful narratives on high-dimensional data reduction processes through case studies. Our study highlights the importance of prompt engineering in eliciting accurate and pertinent responses from LLMs. We also address important considerations around data privacy, hallucinatory outputs, and the rapid advancements in generative AI. Our findings demonstrate its potential in advancing the explainability of GP algorithms. This opens the door for future research into explaining GP models with LLMs.

Designing and generating new data under targeted properties has been attracting various critical applications such as molecule design, image editing and speech synthesis. Traditional hand-crafted approaches heavily rely on expertise experience and intensive human efforts, yet still suffer from the insufficiency of scientific knowledge and low throughput to support effective and efficient data generation. Recently, the advancement of deep learning induces expressive methods that can learn the underlying representation and properties of data. Such capability provides new opportunities in figuring out the mutual relationship between the structural patterns and functional properties of the data and leveraging such relationship to generate structural data given the desired properties. This article provides a systematic review of this promising research area, commonly known as controllable deep data generation. Firstly, the potential challenges are raised and preliminaries are provided. Then the controllable deep data generation is formally defined, a taxonomy on various techniques is proposed and the evaluation metrics in this specific domain are summarized. After that, exciting applications of controllable deep data generation are introduced and existing works are experimentally analyzed and compared. Finally, the promising future directions of controllable deep data generation are highlighted and five potential challenges are identified.

Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.

Aspect based sentiment analysis (ABSA) can provide more detailed information than general sentiment analysis, because it aims to predict the sentiment polarities of the given aspects or entities in text. We summarize previous approaches into two subtasks: aspect-category sentiment analysis (ACSA) and aspect-term sentiment analysis (ATSA). Most previous approaches employ long short-term memory and attention mechanisms to predict the sentiment polarity of the concerned targets, which are often complicated and need more training time. We propose a model based on convolutional neural networks and gating mechanisms, which is more accurate and efficient. First, the novel Gated Tanh-ReLU Units can selectively output the sentiment features according to the given aspect or entity. The architecture is much simpler than attention layer used in the existing models. Second, the computations of our model could be easily parallelized during training, because convolutional layers do not have time dependency as in LSTM layers, and gating units also work independently. The experiments on SemEval datasets demonstrate the efficiency and effectiveness of our models.

北京阿比特科技有限公司