亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study property testing of properties that are definable in first-order logic (FO) in the bounded-degree graph and relational structure models. We show that any FO property that is defined by a formula with quantifier prefix $\exists^*\forall^*$ is testable (i.e., testable with constant query complexity), while there exists an FO property that is expressible by a formula with quantifier prefix $\forall^*\exists^*$ that is not testable. In the dense graph model, a similar picture is long known (Alon, Fischer, Krivelevich, Szegedy, Combinatorica 2000), despite the very different nature of the two models. In particular, we obtain our lower bound by an FO formula that defines a class of bounded-degree expanders, based on zig-zag products of graphs. We expect this to be of independent interest. We then use our class of FO definable bounded-degree expanders to answer a long-standing open problem for proximity-oblivious testers (POTs). POTs are a class of particularly simple testing algorithms, where a basic test is performed a number of times that may depend on the proximity parameter, but the basic test itself is independent of the proximity parameter. In their seminal work, Goldreich and Ron [STOC 2009; SICOMP 2011] show that the graph properties that are constant-query proximity-oblivious testable in the bounded-degree model are precisely the properties that can be expressed as a generalised subgraph freeness (GSF) property that satisfies the non-propagation condition. It is left open whether the non-propagation condition is necessary. We give a negative answer by showing that our property is a GSF property which is propagating. Hence in particular, our property does not admit a POT. For this result we establish a new connection between FO properties and GSF-local properties via neighbourhood profiles.

相關內容

Platooning technologies enable trucks to drive cooperatively and automatically, which bring benefits including less fuel consumption, more road capacity and safety. In order to establish trust during dynamic platoon formation, ensure vehicular data integrity, and guard platoons against potential attackers, it is pivotal to verify any given vehicle's identity information before granting it access to join a platoon. To address this concern in dynamic truck platooning, we present a novel location-aware and privacy-preserving verification protocol based on zero-knowledge proof and permissioned blockchain. By performing the verification process within the spatially-local area defined by a given platoon, our system can provide lower latency and communication overhead compared to a location-agnostic blockchain system. We prototype the proposed system and perform benchmark tests on the Hyperledger platform. The experimental results show that our system is suitable for real-world truck platooning.

We study FO+, a fragment of first-order logic on finite words, where monadic predicates can only appear positively. We show that there is an FO-definable language that is monotone in monadic predicates but not definable in FO+. This provides a simple proof that Lyndon's preservation theorem fails on finite structures. We lift this example language to finite graphs, thereby providing a new result of independent interest for FO-definable graph classes: negation might be needed even when the class is closed under addition of edges. We finally show that the problem of whether a given regular language of finite words is definable in FO+ is undecidable.

This paper presents EnergyAnalyzer, a code-level static analysis tool for estimating the energy consumption of embedded software based on statically predictable hardware events. The tool utilises techniques usually used for worst-case execution time (WCET) analysis together with bespoke energy models developed for two predictable architectures - the ARM Cortex-M0 and the Gaisler LEON3 - to perform energy usage analysis. EnergyAnalyzer has been applied in various use cases, such as selecting candidates for an optimised convolutional neural network, analysing the energy consumption of a camera pill prototype, and analysing the energy consumption of satellite communications software. The tool was developed as part of a larger project called TeamPlay, which aimed to provide a toolchain for developing embedded applications where energy properties are first-class citizens, allowing the developer to reflect directly on these properties at the source code level. The analysis capabilities of EnergyAnalyzer are validated across a large number of benchmarks for the two target architectures and the results show that the statically estimated energy consumption has, with a few exceptions, less than 1% difference compared to the underlying empirical energy models which have been validated on real hardware.

In this article, we propose a new hypothesis testing method for directed acyclic graph (DAG). While there is a rich class of DAG estimation methods, there is a relative paucity of DAG inference solutions. Moreover, the existing methods often impose some specific model structures such as linear models or additive models, and assume independent data observations. Our proposed test instead allows the associations among the random variables to be nonlinear and the data to be time-dependent. We build the test based on some highly flexible neural networks learners. We establish the asymptotic guarantees of the test, while allowing either the number of subjects or the number of time points for each subject to diverge to infinity. We demonstrate the efficacy of the test through simulations and a brain connectivity network analysis.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

In order to overcome the expressive limitations of graph neural networks (GNNs), we propose the first method that exploits vector flows over graphs to develop globally consistent directional and asymmetric aggregation functions. We show that our directional graph networks (DGNs) generalize convolutional neural networks (CNNs) when applied on a grid. Whereas recent theoretical works focus on understanding local neighbourhoods, local structures and local isomorphism with no global information flow, our novel theoretical framework allows directional convolutional kernels in any graph. First, by defining a vector field in the graph, we develop a method of applying directional derivatives and smoothing by projecting node-specific messages into the field. Then we propose the use of the Laplacian eigenvectors as such vector field, and we show that the method generalizes CNNs on an n-dimensional grid, and is provably more discriminative than standard GNNs regarding the Weisfeiler-Lehman 1-WL test. Finally, we bring the power of CNN data augmentation to graphs by providing a means of doing reflection, rotation and distortion on the underlying directional field. We evaluate our method on different standard benchmarks and see a relative error reduction of 8\% on the CIFAR10 graph dataset and 11% to 32% on the molecular ZINC dataset. An important outcome of this work is that it enables to translate any physical or biological problems with intrinsic directional axes into a graph network formalism with an embedded directional field.

Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.

Graph Neural Networks (GNNs), which generalize deep neural networks to graph-structured data, have drawn considerable attention and achieved state-of-the-art performance in numerous graph related tasks. However, existing GNN models mainly focus on designing graph convolution operations. The graph pooling (or downsampling) operations, that play an important role in learning hierarchical representations, are usually overlooked. In this paper, we propose a novel graph pooling operator, called Hierarchical Graph Pooling with Structure Learning (HGP-SL), which can be integrated into various graph neural network architectures. HGP-SL incorporates graph pooling and structure learning into a unified module to generate hierarchical representations of graphs. More specifically, the graph pooling operation adaptively selects a subset of nodes to form an induced subgraph for the subsequent layers. To preserve the integrity of graph's topological information, we further introduce a structure learning mechanism to learn a refined graph structure for the pooled graph at each layer. By combining HGP-SL operator with graph neural networks, we perform graph level representation learning with focus on graph classification task. Experimental results on six widely used benchmarks demonstrate the effectiveness of our proposed model.

In this paper, we present an accurate and scalable approach to the face clustering task. We aim at grouping a set of faces by their potential identities. We formulate this task as a link prediction problem: a link exists between two faces if they are of the same identity. The key idea is that we find the local context in the feature space around an instance (face) contains rich information about the linkage relationship between this instance and its neighbors. By constructing sub-graphs around each instance as input data, which depict the local context, we utilize the graph convolution network (GCN) to perform reasoning and infer the likelihood of linkage between pairs in the sub-graphs. Experiments show that our method is more robust to the complex distribution of faces than conventional methods, yielding favorably comparable results to state-of-the-art methods on standard face clustering benchmarks, and is scalable to large datasets. Furthermore, we show that the proposed method does not need the number of clusters as prior, is aware of noises and outliers, and can be extended to a multi-view version for more accurate clustering accuracy.

Graph-based semi-supervised learning (SSL) is an important learning problem where the goal is to assign labels to initially unlabeled nodes in a graph. Graph Convolutional Networks (GCNs) have recently been shown to be effective for graph-based SSL problems. GCNs inherently assume existence of pairwise relationships in the graph-structured data. However, in many real-world problems, relationships go beyond pairwise connections and hence are more complex. Hypergraphs provide a natural modeling tool to capture such complex relationships. In this work, we explore the use of GCNs for hypergraph-based SSL. In particular, we propose HyperGCN, an SSL method which uses a layer-wise propagation rule for convolutional neural networks operating directly on hypergraphs. To the best of our knowledge, this is the first principled adaptation of GCNs to hypergraphs. HyperGCN is able to encode both the hypergraph structure and hypernode features in an effective manner. Through detailed experimentation, we demonstrate HyperGCN's effectiveness at hypergraph-based SSL.

北京阿比特科技有限公司