亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Nanosatellite constellations equipped with sensors capturing large geographic regions provide unprecedented opportunities for Earth observation. As constellation sizes increase, network contention poses a downlink bottleneck. Orbital Edge Computing (OEC) leverages limited onboard compute resources to reduce transfer costs by processing the raw captures at the source. However, current solutions have limited practicability due to reliance on crude filtering methods or over-prioritizing particular downstream tasks. This work presents FOOL, an OEC-native and task-agnostic feature compression method that preserves prediction performance. FOOL partitions high-resolution satellite imagery to maximize throughput. Further, it embeds context and leverages inter-tile dependencies to lower transfer costs with negligible overhead. While FOOL is a feature compressor, it can recover images with competitive scores on perceptual quality measures at lower bitrates. We extensively evaluate transfer cost reduction by including the peculiarity of intermittently available network connections in low earth orbit. Lastly, we test the feasibility of our system for standardized nanosatellite form factors. We demonstrate that FOOL permits downlinking over 100x the data volume without relying on prior information on the downstream tasks.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Quantile regression is a powerful tool for inferring how covariates affect specific percentiles of the response distribution. Existing methods either estimate conditional quantiles separately for each quantile of interest or estimate the entire conditional distribution using semi- or non-parametric models. The former often produce inadequate models for real data and do not share information across quantiles, while the latter are characterized by complex and constrained models that can be difficult to interpret and computationally inefficient. Further, neither approach is well-suited for quantile-specific subset selection. Instead, we pose the fundamental problems of linear quantile estimation, uncertainty quantification, and subset selection from a Bayesian decision analysis perspective. For any Bayesian regression model, we derive optimal and interpretable linear estimates and uncertainty quantification for each model-based conditional quantile. Our approach introduces a quantile-focused squared error loss, which enables efficient, closed-form computing and maintains a close relationship with Wasserstein-based density estimation. In an extensive simulation study, our methods demonstrate substantial gains in quantile estimation accuracy, variable selection, and inference over frequentist and Bayesian competitors. We apply these tools to identify the quantile-specific impacts of social and environmental stressors on educational outcomes for a large cohort of children in North Carolina.

We present counter-intuitive examples of a viscous regularizations of a two-dimensional strictly hyperbolic system of conservation laws. The regularizations are obtained using two different viscosity matrices. While for both of the constructed ``viscous'' systems waves propagating in either $x$- or $y$-directions are stable, oblique waves may be linearly unstable. Numerical simulations fully corroborate these analytical results. To the best of our knowledge, this is the first nontrivial result related to the multidimensional Gelfand problem. Our conjectures provide direct answer to Gelfand's problem both in one- and multi-dimensional cases.

The construction and robotic sensing data originate from disparate sources and are associated with distinct frames of reference. The primary objective of this study is to align LiDAR point clouds with building information modeling (BIM) using a global point cloud registration approach, aimed at establishing a shared understanding between the two modalities, i.e., ``speak the same language''. To achieve this, we design a cross-modality registration method, spanning from front end the back end. At the front end, we extract descriptors by identifying walls and capturing the intersected corners. Subsequently, for the back-end pose estimation, we employ the Hough transform for pose estimation and estimate multiple pose candidates. The final pose is verified by wall-pixel correlation. To evaluate the effectiveness of our method, we conducted real-world multi-session experiments in a large-scale university building, involving two different types of LiDAR sensors. We also report our findings and plan to make our collected dataset open-sourced.

Recent advances in multimodal large language models (LLMs) have lowered the barriers to rapidly prototyping AI-powered features via prompting, especially for mobile-intended use cases. Despite the value of situated user feedback, the process of soliciting early, mobile-situated user feedback on AI prototypes remains challenging. The broad scope and flexibility of LLMs means that, for a given use-case-specific prototype, there is a crucial need to understand the wide range of in-the-wild input likely to be provided by the user, as well as their in-context expectations of the AI's behavior. To explore the concept of in situ AI prototyping and testing, we created MobileMaker: an AI prototyping tool that enables designers to rapidly create mobile AI prototypes that can be tested on-device, and enables testers to make on-device, in-the-field revisions of the prototype through natural language. In an exploratory study with 16 users, we explored how user feedback on prototypes created with MobileMaker compares to that of existing prototyping tools (e.g., Figma, prompt editors). We found that MobileMaker prototypes enabled more serendipitous discovery of: model input edge cases, discrepancies between AI's and user's in-context interpretation of the task, and contextual signals missed by the AI. Furthermore, we learned that while the ability to make in-the-wild revisions led users to feel more fulfilled as active participants in the design process, it might also constrain their feedback to the subset of changes perceived as more actionable or implementable by the prototyping tool.

Bimanual manipulation is a longstanding challenge in robotics due to the large number of degrees of freedom and the strict spatial and temporal synchronization required to generate meaningful behavior. Humans learn bimanual manipulation skills by watching other humans and by refining their abilities through play. In this work, we aim to enable robots to learn bimanual manipulation behaviors from human video demonstrations and fine-tune them through interaction. Inspired by seminal work in psychology and biomechanics, we propose modeling the interaction between two hands as a serial kinematic linkage -- as a screw motion, in particular, that we use to define a new action space for bimanual manipulation: screw actions. We introduce ScrewMimic, a framework that leverages this novel action representation to facilitate learning from human demonstration and self-supervised policy fine-tuning. Our experiments demonstrate that ScrewMimic is able to learn several complex bimanual behaviors from a single human video demonstration, and that it outperforms baselines that interpret demonstrations and fine-tune directly in the original space of motion of both arms. For more information and video results, //robin-lab.cs.utexas.edu/ScrewMimic/

Instruction tuning improves the reasoning abilities of large language models (LLMs), with data quality and scalability being the crucial factors. Most instruction tuning data come from human crowd-sourcing or GPT-4 distillation. We propose a paradigm to efficiently harvest 10 million naturally existing instruction data from the pre-training web corpus to enhance LLM reasoning. Our approach involves (1) recalling relevant documents, (2) extracting instruction-response pairs, and (3) refining the extracted pairs using open-source LLMs. Fine-tuning base LLMs on this dataset, we build MAmmoTH2 models, which significantly boost performance on reasoning benchmarks. Notably, MAmmoTH2-7B's (Mistral) performance increases from 11% to 34% on MATH and from 36% to 67% on GSM8K without training on any in-domain data. Further training MAmmoTH2 on public instruction tuning datasets yields MAmmoTH2-Plus, achieving state-of-the-art performance on several reasoning and chatbot benchmarks. Our work demonstrates how to harvest large-scale, high-quality instruction data without costly human annotation or GPT-4 distillation, providing a new paradigm for building better instruction tuning data.

Sharding enhances blockchain scalability by dividing the network into shards, each managing specific unspent transaction outputs or accounts. As an introduced new transaction type, cross-shard transactions pose a critical challenge to the security and efficiency of sharding blockchains. Currently, there is a lack of a generic sharding consensus pattern that achieves both security and low overhead. In this paper, we present Kronos, a secure sharding blockchain consensus achieving optimized overhead. In particular, we propose a new secure sharding consensus pattern, based on a buffer managed jointly by shard members. Valid transactions are transferred to the payee via the buffer, while invalid ones are rejected through happy or unhappy paths. Kronos is proved to achieve security with atomicity under malicious clients with optimal intra-shard overhead $kB$ ($k$ for involved shard number and $B$ for a Byzantine fault tolerance (BFT) cost). Besides, we propose secure cross-shard certification methods based on batch certification and reliable cross-shard transfer. The former combines hybrid trees or vector commitments, while the latter integrates erasure coding. Handling $b$ transactions, Kronos is proved to achieve reliability with low cross-shard overhead $O(n b \lambda)$ ($n$ for shard size and $\lambda$ for the security parameter). Notably, Kronos imposes no restrictions on BFT and does not rely on time assumptions, offering optional constructions in various modules. We implement Kronos using two prominent BFT protocols: asynchronous Speeding Dumbo and partial synchronous Hotstuff. Extensive experiments demonstrate Kronos scales the consensus nodes to thousands, achieving a substantial throughput of 320 ktx/sec with 2.0 sec latency. Compared with the past solutions, Kronos outperforms, achieving up to a 12* improvement in throughput and a 50% reduction in latency.

Recent months have seen the emergence of a powerful new trend in which large language models (LLMs) are augmented to become autonomous language agents capable of performing objective oriented multi-step tasks on their own, rather than merely responding to queries from human users. Most existing language agents, however, are not optimized using environment-specific rewards. Although some agents enable iterative refinement through verbal feedback, they do not reason and plan in ways that are compatible with gradient-based learning from rewards. This paper introduces a principled framework for reinforcing large language agents by learning a retrospective model, which automatically tunes the language agent prompts from environment feedback through policy gradient. Specifically, our proposed agent architecture learns from rewards across multiple environments and tasks, for fine-tuning a pre-trained language model which refines the language agent prompt by summarizing the root cause of prior failed attempts and proposing action plans. Experimental results on various tasks demonstrate that the language agents improve over time and that our approach considerably outperforms baselines that do not properly leverage gradients from the environment. This demonstrates that using policy gradient optimization to improve language agents, for which we believe our work is one of the first, seems promising and can be applied to optimize other models in the agent architecture to enhance agent performances over time.

Robotics presents a promising opportunity for enhancing bathing assistance, potentially to alleviate labor shortages and reduce care costs, while offering consistent and gentle care for individuals with physical disabilities. However, ensuring flexible and efficient cleaning of the human body poses challenges as it involves direct physical contact between the human and the robot, and necessitates simple, safe, and effective control. In this paper, we introduce a soft, expandable robotic manipulator with embedded capacitive proximity sensing arrays, designed for safe and efficient bathing assistance. We conduct a thorough evaluation of our soft manipulator, comparing it with a baseline rigid end effector in a human study involving 12 participants across $96$ bathing trails. Our soft manipulator achieves an an average cleaning effectiveness of 88.8% on arms and 81.4% on legs, far exceeding the performance of the baseline. Participant feedback further validates the manipulator's ability to maintain safety, comfort, and thorough cleaning.

Emergent communication studies the development of language between autonomous agents, aiming to improve understanding of natural language evolution and increase communication efficiency. While temporal aspects of language have been considered in computational linguistics, there has been no research on temporal references in emergent communication. This paper addresses this gap, by exploring how agents communicate about temporal relationships. We analyse three potential influences for the emergence of temporal references: environmental, external, and architectural changes. Our experiments demonstrate that altering the loss function is insufficient for temporal references to emerge; rather, architectural changes are necessary. However, a minimal change in agent architecture, using a different batching method, allows the emergence of temporal references. This modified design is compared with the standard architecture in a temporal referential games environment, which emphasises temporal relationships. The analysis indicates that over 95\% of the agents with the modified batching method develop temporal references, without changes to their loss function. We consider temporal referencing necessary for future improvements to the agents' communication efficiency, yielding a closer to optimal coding as compared to purely compositional languages. Our readily transferable architectural insights provide the basis for their incorporation into other emergent communication settings.

北京阿比特科技有限公司