Distributed learning has become an integral tool for scaling up machine learning and addressing the growing need for data privacy. Although more robust to the network topology, decentralized learning schemes have not gained the same level of popularity as their centralized counterparts for being less competitive performance-wise. In this work, we attribute this issue to the lack of synchronization among decentralized learning workers, showing both empirically and theoretically that the convergence rate is tied to the synchronization level among the workers. Such motivated, we present a novel decentralized learning framework based on nonlinear gossiping (NGO), that enjoys an appealing finite-time consensus property to achieve better synchronization. We provide a careful analysis of its convergence and discuss its merits for modern distributed optimization applications, such as deep neural networks. Our analysis on how communication delay and randomized chats affect learning further enables the derivation of practical variants that accommodate asynchronous and randomized communications. To validate the effectiveness of our proposal, we benchmark NGO against competing solutions through an extensive set of tests, with encouraging results reported.
This paper studies decentralized federated learning algorithms in wireless IoT networks. The traditional parameter server architecture for federated learning faces some problems such as low fault tolerance, large communication overhead and inaccessibility of private data. To solve these problems, we propose a Decentralized-Wireless-Federated-Learning algorithm called DWFL. The algorithm works in a system where the workers are organized in a peer-to-peer and server-less manner, and the workers exchange their privacy preserving data with the analog transmission scheme over wireless channels in parallel. With rigorous analysis, we show that DWFL satisfies $(\epsilon,\delta)$-differential privacy and the privacy budget per worker scales as $\mathcal{O}(\frac{1}{\sqrt{N}})$, in contrast with the constant budget in the orthogonal transmission approach. Furthermore, DWFL converges at the same rate of $\mathcal{O}(\sqrt{\frac{1}{TN}})$ as the best known centralized algorithm with a central parameter server. Extensive experiments demonstrate that our algorithm DWFL also performs well in real settings.
Client selection strategies are widely adopted to handle the communication-efficient problem in recent studies of Federated Learning (FL). However, due to the large variance of the selected subset's update, prior selection approaches with a limited sampling ratio cannot perform well on convergence and accuracy in heterogeneous FL. To address this problem, in this paper, we propose a novel stratified client selection scheme to reduce the variance for the pursuit of better convergence and higher accuracy. Specifically, to mitigate the impact of heterogeneity, we develop stratification based on clients' local data distribution to derive approximate homogeneous strata for better selection in each stratum. Concentrating on a limited sampling ratio scenario, we next present an optimized sample size allocation scheme by considering the diversity of stratum's variability, with the promise of further variance reduction. Theoretically, we elaborate the explicit relation among different selection schemes with regard to variance, under heterogeneous settings, we demonstrate the effectiveness of our selection scheme. Experimental results confirm that our approach not only allows for better performance relative to state-of-the-art methods but also is compatible with prevalent FL algorithms.
From learning assistance to companionship, social robots promise to enhance many aspects of daily life. However, social robots have not seen widespread adoption, in part because (1) they do not adapt their behavior to new users, and (2) they do not provide sufficient privacy protections. Centralized learning, whereby robots develop skills by gathering data on a server, contributes to these limitations by preventing online learning of new experiences and requiring storage of privacy-sensitive data. In this work, we propose a decentralized learning alternative that improves the privacy and personalization of social robots. We combine two machine learning approaches, Federated Learning and Continual Learning, to capture interaction dynamics distributed physically across robots and temporally across repeated robot encounters. We define a set of criteria that should be balanced in decentralized robot learning scenarios. We also develop a new algorithm -- Elastic Transfer -- that leverages importance-based regularization to preserve relevant parameters across robots and interactions with multiple humans. We show that decentralized learning is a viable alternative to centralized learning in a proof-of-concept Socially-Aware Navigation domain, and demonstrate how Elastic Transfer improves several of the proposed criteria.
Federated learning (FL) is an emerging promising privacy-preserving machine learning paradigm and has raised more and more attention from researchers and developers. FL keeps users' private data on devices and exchanges the gradients of local models to cooperatively train a shared Deep Learning (DL) model on central custodians. However, the security and fault tolerance of FL have been increasingly discussed, because its central custodian mechanism or star-shaped architecture can be vulnerable to malicious attacks or software failures. To address these problems, Swarm Learning (SL) introduces a permissioned blockchain to securely onboard members and dynamically elect the leader, which allows performing DL in an extremely decentralized manner. Compared with tremendous attention to SL, there are few empirical studies on SL or blockchain-based decentralized FL, which provide comprehensive knowledge of best practices and precautions of deploying SL in real-world scenarios. Therefore, we conduct the first comprehensive study of SL to date, to fill the knowledge gap between SL deployment and developers, as far as we are concerned. In this paper, we conduct various experiments on 3 public datasets of 5 research questions, present interesting findings, quantitatively analyze the reasons behind these findings, and provide developers and researchers with practical suggestions. The findings have evidenced that SL is supposed to be suitable for most application scenarios, no matter whether the dataset is balanced, polluted, or biased over irrelevant features.
We propose near-optimal overlay networks based on $d$-regular expander graphs to accelerate decentralized federated learning (DFL) and improve its generalization. In DFL a massive number of clients are connected by an overlay network, and they solve machine learning problems collaboratively without sharing raw data. Our overlay network design integrates spectral graph theory and the theoretical convergence and generalization bounds for DFL. As such, our proposed overlay networks accelerate convergence, improve generalization, and enhance robustness to clients failures in DFL with theoretical guarantees. Also, we present an efficient algorithm to convert a given graph to a practical overlay network and maintaining the network topology after potential client failures. We numerically verify the advantages of DFL with our proposed networks on various benchmark tasks, ranging from image classification to language modeling using hundreds of clients.
Federated learning enables multiple parties to collaboratively train a machine learning model without communicating their local data. A key challenge in federated learning is to handle the heterogeneity of local data distribution across parties. Although many studies have been proposed to address this challenge, we find that they fail to achieve high performance in image datasets with deep learning models. In this paper, we propose MOON: model-contrastive federated learning. MOON is a simple and effective federated learning framework. The key idea of MOON is to utilize the similarity between model representations to correct the local training of individual parties, i.e., conducting contrastive learning in model-level. Our extensive experiments show that MOON significantly outperforms the other state-of-the-art federated learning algorithms on various image classification tasks.
Federated learning has been showing as a promising approach in paving the last mile of artificial intelligence, due to its great potential of solving the data isolation problem in large scale machine learning. Particularly, with consideration of the heterogeneity in practical edge computing systems, asynchronous edge-cloud collaboration based federated learning can further improve the learning efficiency by significantly reducing the straggler effect. Despite no raw data sharing, the open architecture and extensive collaborations of asynchronous federated learning (AFL) still give some malicious participants great opportunities to infer other parties' training data, thus leading to serious concerns of privacy. To achieve a rigorous privacy guarantee with high utility, we investigate to secure asynchronous edge-cloud collaborative federated learning with differential privacy, focusing on the impacts of differential privacy on model convergence of AFL. Formally, we give the first analysis on the model convergence of AFL under DP and propose a multi-stage adjustable private algorithm (MAPA) to improve the trade-off between model utility and privacy by dynamically adjusting both the noise scale and the learning rate. Through extensive simulations and real-world experiments with an edge-could testbed, we demonstrate that MAPA significantly improves both the model accuracy and convergence speed with sufficient privacy guarantee.
Meta-learning has been proposed as a framework to address the challenging few-shot learning setting. The key idea is to leverage a large number of similar few-shot tasks in order to learn how to adapt a base-learner to a new task for which only a few labeled samples are available. As deep neural networks (DNNs) tend to overfit using a few samples only, meta-learning typically uses shallow neural networks (SNNs), thus limiting its effectiveness. In this paper we propose a novel few-shot learning method called meta-transfer learning (MTL) which learns to adapt a deep NN for few shot learning tasks. Specifically, "meta" refers to training multiple tasks, and "transfer" is achieved by learning scaling and shifting functions of DNN weights for each task. In addition, we introduce the hard task (HT) meta-batch scheme as an effective learning curriculum for MTL. We conduct experiments using (5-class, 1-shot) and (5-class, 5-shot) recognition tasks on two challenging few-shot learning benchmarks: miniImageNet and Fewshot-CIFAR100. Extensive comparisons to related works validate that our meta-transfer learning approach trained with the proposed HT meta-batch scheme achieves top performance. An ablation study also shows that both components contribute to fast convergence and high accuracy.
Alternating Direction Method of Multipliers (ADMM) is a widely used tool for machine learning in distributed settings, where a machine learning model is trained over distributed data sources through an interactive process of local computation and message passing. Such an iterative process could cause privacy concerns of data owners. The goal of this paper is to provide differential privacy for ADMM-based distributed machine learning. Prior approaches on differentially private ADMM exhibit low utility under high privacy guarantee and often assume the objective functions of the learning problems to be smooth and strongly convex. To address these concerns, we propose a novel differentially private ADMM-based distributed learning algorithm called DP-ADMM, which combines an approximate augmented Lagrangian function with time-varying Gaussian noise addition in the iterative process to achieve higher utility for general objective functions under the same differential privacy guarantee. We also apply the moments accountant method to bound the end-to-end privacy loss. The theoretical analysis shows that DP-ADMM can be applied to a wider class of distributed learning problems, is provably convergent, and offers an explicit utility-privacy tradeoff. To our knowledge, this is the first paper to provide explicit convergence and utility properties for differentially private ADMM-based distributed learning algorithms. The evaluation results demonstrate that our approach can achieve good convergence and model accuracy under high end-to-end differential privacy guarantee.
We propose accelerated randomized coordinate descent algorithms for stochastic optimization and online learning. Our algorithms have significantly less per-iteration complexity than the known accelerated gradient algorithms. The proposed algorithms for online learning have better regret performance than the known randomized online coordinate descent algorithms. Furthermore, the proposed algorithms for stochastic optimization exhibit as good convergence rates as the best known randomized coordinate descent algorithms. We also show simulation results to demonstrate performance of the proposed algorithms.