亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Cloud computing comes with a lot of advanced features along with privacy and security problem. Smart meter data takes the benefit of cloud computing in the smart grid. User's privacy can be compromised by analyzing the smart meter data generated by household electrical appliances. The user loses control over the data while data is shifted to the cloud. This paper describes the issues under the privacy and security of smart meter data in the cloud environment. We also compare the existing approaches for preserving the privacy and security of smart meter data.

相關內容

Deep learning has shown great promise in the domain of medical image analysis. Medical professionals and healthcare providers have been adopting the technology to speed up and enhance their work. These systems use deep neural networks (DNN) which are vulnerable to adversarial samples; images with imperceivable changes that can alter the model's prediction. Researchers have proposed defences which either make a DNN more robust or detect the adversarial samples before they do harm. However, none of these works consider an informed attacker which can adapt to the defence mechanism. We show that an informed attacker can evade five of the current state of the art defences while successfully fooling the victim's deep learning model, rendering these defences useless. We then suggest better alternatives for securing healthcare DNNs from such attacks: (1) harden the system's security and (2) use digital signatures.

Federated Learning (FL) provides privacy preservation by allowing the model training at edge devices without the need of sending the data from edge to a centralized server. FL has distributed the implementation of ML. Another variant of FL which is well suited for the Internet of Things (IoT) is known as Collaborated Federated Learning (CFL), which does not require an edge device to have a direct link to the model aggregator. Instead, the devices can connect to the central model aggregator via other devices using them as relays. Although, FL and CFL protect the privacy of edge devices but raises security challenges for a centralized server that performs model aggregation. The centralized server is prone to malfunction, backdoor attacks, model corruption, adversarial attacks and external attacks. Moreover, edge device to centralized server data exchange is not required in FL and CFL, but model parameters are sent from the model aggregator (global model) to edge devices (local model), which is still prone to cyber-attacks. These security and privacy concerns can be potentially addressed by Blockchain technology. The blockchain is a decentralized and consensus-based chain where devices can share consensus ledgers with increased reliability and security, thus significantly reducing the cyberattacks on an exchange of information. In this work, we will investigate the efficacy of blockchain-based decentralized exchange of model parameters and relevant information among edge devices and from a centralized server to edge devices. Moreover, we will be conducting the feasibility analysis for blockchain-based CFL models for different application scenarios like the internet of vehicles, and the internet of things. The proposed study aims to improve the security, reliability and privacy preservation by the use of blockchain-powered CFL.

To fight against infectious diseases (e.g., SARS, COVID-19, Ebola, etc.), government agencies, technology companies and health institutes have launched various contact tracing approaches to identify and notify the people exposed to infection sources. However, existing tracing approaches can lead to severe privacy and security concerns, thereby preventing their secure and widespread use among communities. To tackle these problems, this paper proposes CoAvoid, a decentralized, privacy-preserved contact tracing system that features good dependability and usability. CoAvoid leverages the Google/Apple Exposure Notification (GAEN) API to achieve decent device compatibility and operating efficiency. It utilizes GPS along with Bluetooth Low Energy (BLE) to dependably verify user information. In addition, to enhance privacy protection, CoAvoid applies fuzzification and obfuscation measures to shelter sensitive data, making both servers and users agnostic to information of both low and high-risk populations. The evaluation demonstrates good efficacy and security of CoAvoid. Compared with four state-of-art contact tracing applications, CoAvoid can reduce upload data by at least 90% and simultaneously resist wormhole and replay attacks in various scenarios.

Brain computing interfaces (BCI) are used in a plethora of safety/privacy-critical applications, ranging from healthcare to smart communication and control. Wearable BCI setups typically involve a head-mounted sensor connected to a mobile device, combined with ML-based data processing. Consequently, they are susceptible to a multiplicity of attacks across the hardware, software, and networking stacks used that can leak users' brainwave data or at worst relinquish control of BCI-assisted devices to remote attackers. In this paper, we: (i) analyse the whole-system security and privacy threats to existing wearable BCI products from an operating system and adversarial machine learning perspective; and (ii) introduce Argus, the first information flow control system for wearable BCI applications that mitigates these attacks. Argus' domain-specific design leads to a lightweight implementation on Linux ARM platforms suitable for existing BCI use-cases. Our proof of concept attacks on real-world BCI devices (Muse, NeuroSky, and OpenBCI) led us to discover more than 300 vulnerabilities across the stacks of six major attack vectors. Our evaluation shows Argus is highly effective in tracking sensitive dataflows and restricting these attacks with an acceptable memory and performance overhead (<15%).

We survey the state-of-the-art on model-based formalisms for safety and security analysis, where safety refers to the absence of unintended failures, and security absence of malicious attacks. We consider fourteen model-based formalisms, comparing their modeling principles, the interaction between safety and security, and analysis methods. In each formalism, we model the classical Locked Door Example where possible. In addition, we compare the formalisms according their modeling expressiveness. Our key finding is that the exact nature of safety-security interaction is still ill-understood. Existing formalisms merge previous safety and security formalisms, without introducing specific constructs to model safety-security interactions, or metrics to analyze trade offs.

Non-Fungible Tokens (NFTs) have emerged as a way to collect digital art as well as an investment vehicle. Despite having been popularized only recently, NFT markets have witnessed several high-profile (and high-value) asset sales and a tremendous growth in trading volumes over the last year. Unfortunately, these marketplaces have not yet received much security scrutiny. Instead, most academic research has focused on attacks against decentralized finance (DeFi) protocols and automated techniques to detect smart contract vulnerabilities. To the best of our knowledge, we are the first to study the market dynamics and security issues of the multi-billion dollar NFT ecosystem. In this paper, we first present a systematic overview of how the NFT ecosystem works, and we identify three major actors: marketplaces, external entities, and users. We perform an in-depth analysis of the top 8 marketplaces (ranked by transaction volume) to discover potential issues associated with such marketplaces. Many of these issues can lead to substantial financial losses. We also collected a large amount of asset and event data pertaining to the NFTs being traded in the examined marketplaces. We automatically analyze this data to understand how the entities external to the blockchain are able to interfere with NFT markets, leading to serious consequences, and quantify the malicious trading behaviors carried out by users under the cloak of anonymity.

A set of steps for implementing a chatbot, to support decision-making activities in the software incident management process is proposed and discussed in this article. Each step is presented independently of the platform used for the construction of chatbots and are detailed with their respective activities. The proposed steps can be carried out in a continuous and adaptable way, favoring the constant training of a chatbot and allowing the increasingly cohesive interpretatin of the intentions of the specialists who work in the Software Incident Management Process. The software incident resolution process accordingly to the ITIL framework, is considered for the experiment. The results of the work present the steps for the chatbot construction, the solution based on DialogFlow platform and some conclusions based on the experiment.

Nowadays game engines are imperative for building 3D applications and games. This is for the reason that the engines appreciably reduce resources for employing obligatory but intricate utilities. This paper elucidates about a game engine and its foremost elements. It portrays a number of special kinds of contemporary game engines by way of their aspects, procedure and deliberates their stipulations with comparison.

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

Privacy is a major good for users of personalized services such as recommender systems. When applied to the field of health informatics, privacy concerns of users may be amplified, but the possible utility of such services is also high. Despite availability of technologies such as k-anonymity, differential privacy, privacy-aware recommendation, and personalized privacy trade-offs, little research has been conducted on the users' willingness to share health data for usage in such systems. In two conjoint-decision studies (sample size n=521), we investigate importance and utility of privacy-preserving techniques related to sharing of personal health data for k-anonymity and differential privacy. Users were asked to pick a preferred sharing scenario depending on the recipient of the data, the benefit of sharing data, the type of data, and the parameterized privacy. Users disagreed with sharing data for commercial purposes regarding mental illnesses and with high de-anonymization risks but showed little concern when data is used for scientific purposes and is related to physical illnesses. Suggestions for health recommender system development are derived from the findings.

北京阿比特科技有限公司