亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper focuses on the numerical scheme for multiple-delay stochastic differential equations with partially H\"older continuous drifts and locally H\"older continuous diffusion coefficients. To handle with the superlinear terms in coefficients, the truncated Euler-Maruyama scheme is employed. Under the given conditions, the convergence rates at time $T$ in both $\mathcal{L}^{1}$ and $\mathcal{L}^{2}$ senses are shown by virtue of the Yamada-Watanabe approximation technique. Moreover, the convergence rates over a finite time interval $[0,T]$ are also obtained. Additionally, it should be noted that the convergence rates will not be affected by the number of delay variables. Finally, we perform the numerical experiments on the stochastic volatility model to verify the reliability of the theoretical results.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

We develop a novel deep learning technique, termed Deep Orthogonal Decomposition (DOD), for dimensionality reduction and reduced order modeling of parameter dependent partial differential equations. The approach consists in the construction of a deep neural network model that approximates the solution manifold through a continuously adaptive local basis. In contrast to global methods, such as Principal Orthogonal Decomposition (POD), the adaptivity allows the DOD to overcome the Kolmogorov barrier, making the approach applicable to a wide spectrum of parametric problems. Furthermore, due to its hybrid linear-nonlinear nature, the DOD can accommodate both intrusive and nonintrusive techniques, providing highly interpretable latent representations and tighter control on error propagation. For this reason, the proposed approach stands out as a valuable alternative to other nonlinear techniques, such as deep autoencoders. The methodology is discussed both theoretically and practically, evaluating its performances on problems featuring nonlinear PDEs, singularities, and parametrized geometries.

We provide rigorous theoretical bounds for Anderson acceleration (AA) that allow for approximate calculations when applied to solve linear problems. We show that, when the approximate calculations satisfy the provided error bounds, the convergence of AA is maintained while the computational time could be reduced. We also provide computable heuristic quantities, guided by the theoretical error bounds, which can be used to automate the tuning of accuracy while performing approximate calculations. For linear problems, the use of heuristics to monitor the error introduced by approximate calculations, combined with the check on monotonicity of the residual, ensures the convergence of the numerical scheme within a prescribed residual tolerance. Motivated by the theoretical studies, we propose a reduced variant of AA, which consists in projecting the least-squares used to compute the Anderson mixing onto a subspace of reduced dimension. The dimensionality of this subspace adapts dynamically at each iteration as prescribed by the computable heuristic quantities. We numerically show and assess the performance of AA with approximate calculations on: (i) linear deterministic fixed-point iterations arising from the Richardson's scheme to solve linear systems with open-source benchmark matrices with various preconditioners and (ii) non-linear deterministic fixed-point iterations arising from non-linear time-dependent Boltzmann equations.

We analyze a bilinear optimal control problem for the Stokes--Brinkman equations: the control variable enters the state equations as a coefficient. In two- and three-dimensional Lipschitz domains, we perform a complete continuous analysis that includes the existence of solutions and first- and second-order optimality conditions. We also develop two finite element methods that differ fundamentally in whether the admissible control set is discretized or not. For each of the proposed methods, we perform a convergence analysis and derive a priori error estimates; the latter under the assumption that the domain is convex. Finally, assuming that the domain is Lipschitz, we develop an a posteriori error estimator for each discretization scheme and obtain a global reliability bound.

We study the data-driven selection of causal graphical models using constraint-based algorithms, which determine the existence or non-existence of edges (causal connections) in a graph based on testing a series of conditional independence hypotheses. In settings where the ultimate scientific goal is to use the selected graph to inform estimation of some causal effect of interest (e.g., by selecting a valid and sufficient set of adjustment variables), we argue that a "cautious" approach to graph selection should control the probability of falsely removing edges and prefer dense, rather than sparse, graphs. We propose a simple inversion of the usual conditional independence testing procedure: to remove an edge, test the null hypothesis of conditional association greater than some user-specified threshold, rather than the null of independence. This equivalence testing formulation to testing independence constraints leads to a procedure with desriable statistical properties and behaviors that better match the inferential goals of certain scientific studies, for example observational epidemiological studies that aim to estimate causal effects in the face of causal model uncertainty. We illustrate our approach on a data example from environmental epidemiology.

We construct a fast exact algorithm for the simulation of the first-passage time, jointly with the undershoot and overshoot, of a tempered stable subordinator over an arbitrary non-increasing absolutely continuous function. We prove that the running time of our algorithm has finite exponential moments and provide bounds on its expected running time with explicit dependence on the characteristics of the process and the initial value of the function. The expected running time grows at most cubically in the stability parameter (as it approaches either $0$ or $1$) and is linear in the tempering parameter and the initial value of the function. Numerical performance, based on the implementation in the dedicated GitHub repository, exhibits a good agreement with our theoretical bounds. We provide numerical examples to illustrate the performance of our algorithm in Monte Carlo estimation.

We detail the mathematical formulation of the line of "functional quantizer" modules developed by the Mathematics and Music Lab (MML) at Michigan Technological University, for the VCV Rack software modular synthesizer platform, which allow synthesizer players to tune oscillators to new musical scales based on mathematical functions. For example, we describe the recently-released MML Logarithmic Quantizer (LOG QNT) module that tunes synthesizer oscillators to the non-Pythagorean musical scale introduced by indie band The Apples in Stereo.

This paper investigates the iterates $\hbb^1,\dots,\hbb^T$ obtained from iterative algorithms in high-dimensional linear regression problems, in the regime where the feature dimension $p$ is comparable with the sample size $n$, i.e., $p \asymp n$. The analysis and proposed estimators are applicable to Gradient Descent (GD), proximal GD and their accelerated variants such as Fast Iterative Soft-Thresholding (FISTA). The paper proposes novel estimators for the generalization error of the iterate $\hbb^t$ for any fixed iteration $t$ along the trajectory. These estimators are proved to be $\sqrt n$-consistent under Gaussian designs. Applications to early-stopping are provided: when the generalization error of the iterates is a U-shape function of the iteration $t$, the estimates allow to select from the data an iteration $\hat t$ that achieves the smallest generalization error along the trajectory. Additionally, we provide a technique for developing debiasing corrections and valid confidence intervals for the components of the true coefficient vector from the iterate $\hbb^t$ at any finite iteration $t$. Extensive simulations on synthetic data illustrate the theoretical results.

Two sequential estimators are proposed for the odds p/(1-p) and log odds log(p/(1-p)) respectively, using independent Bernoulli random variables with parameter p as inputs. The estimators are unbiased, and guarantee that the variance of the estimation error divided by the true value of the odds, or the variance of the estimation error of the log odds, are less than a target value for any p in (0,1). The estimators are close to optimal in the sense of Wolfowitz's bound.

The consistency of the maximum likelihood estimator for mixtures of elliptically-symmetric distributions for estimating its population version is shown, where the underlying distribution $P$ is nonparametric and does not necessarily belong to the class of mixtures on which the estimator is based. In a situation where $P$ is a mixture of well enough separated but nonparametric distributions it is shown that the components of the population version of the estimator correspond to the well separated components of $P$. This provides some theoretical justification for the use of such estimators for cluster analysis in case that $P$ has well separated subpopulations even if these subpopulations differ from what the mixture model assumes.

We consider covariance parameter estimation for Gaussian processes with functional inputs. From an increasing-domain asymptotics perspective, we prove the asymptotic consistency and normality of the maximum likelihood estimator. We extend these theoretical guarantees to encompass scenarios accounting for approximation errors in the inputs, which allows robustness of practical implementations relying on conventional sampling methods or projections onto a functional basis. Loosely speaking, both consistency and normality hold when the approximation error becomes negligible, a condition that is often achieved as the number of samples or basis functions becomes large. These later asymptotic properties are illustrated through analytical examples, including one that covers the case of non-randomly perturbed grids, as well as several numerical illustrations.

北京阿比特科技有限公司