亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Parsing questions into executable logical forms has showed impressive results for knowledge-base question answering (KBQA). However, complex KBQA is a more challenging task that requires to perform complex multi-step reasoning. Recently, a new semantic parser called KoPL has been proposed to explicitly model the reasoning processes, which achieved the state-of-the-art on complex KBQA. In this paper, we further explore how to unlock the reasoning ability of semantic parsers by a simple proposed parse-execute-refine paradigm. We refine and improve the KoPL parser by demonstrating the executed intermediate reasoning steps to the KBQA model. We show that such simple strategy can significantly improve the ability of complex reasoning. Specifically, we propose three components: a parsing stage, an execution stage and a refinement stage, to enhance the ability of complex reasoning. The parser uses the KoPL to generate the transparent logical forms. Then, the execution stage aligns and executes the logical forms over knowledge base to obtain intermediate reasoning processes. Finally, the intermediate step-by-step reasoning processes are demonstrated to the KBQA model in the refinement stage. With the explicit reasoning processes, it is much easier to answer the complex questions. Experiments on benchmark dataset shows that the proposed PER-KBQA performs significantly better than the stage-of-the-art baselines on the complex KBQA.

相關內容

Recommender systems play a vital role in various online services. However, the insulated nature of training and deploying separately within a specific domain limits their access to open-world knowledge. Recently, the emergence of large language models (LLMs) has shown promise in bridging this gap by encoding extensive world knowledge and demonstrating reasoning capability. Nevertheless, previous attempts to directly use LLMs as recommenders have not achieved satisfactory results. In this work, we propose an Open-World Knowledge Augmented Recommendation Framework with Large Language Models, dubbed KAR, to acquire two types of external knowledge from LLMs -- the reasoning knowledge on user preferences and the factual knowledge on items. We introduce factorization prompting to elicit accurate reasoning on user preferences. The generated reasoning and factual knowledge are effectively transformed and condensed into augmented vectors by a hybrid-expert adaptor in order to be compatible with the recommendation task. The obtained vectors can then be directly used to enhance the performance of any recommendation model. We also ensure efficient inference by preprocessing and prestoring the knowledge from the LLM. Extensive experiments show that KAR significantly outperforms the state-of-the-art baselines and is compatible with a wide range of recommendation algorithms.

Visual question answering (VQA) is a challenging task that requires the ability to comprehend and reason with visual information. While recent vision-language models have made strides, they continue to struggle with zero-shot VQA, particularly in handling complex compositional questions and adapting to new domains i.e. knowledge-based reasoning. This paper explores the use of various prompting strategies, focusing on the BLIP2 model, to enhance zero-shot VQA performance. We conduct a comprehensive investigation across several VQA datasets, examining the effectiveness of different question templates, the role of few-shot exemplars, the impact of chain-of-thought (CoT) reasoning, and the benefits of incorporating image captions as additional visual cues. Despite the varied outcomes, our findings demonstrate that carefully designed question templates and the integration of additional visual cues, like image captions, can contribute to improved VQA performance, especially when used in conjunction with few-shot examples. However, we also identify a limitation in the use of chain-of-thought rationalization, which negatively affects VQA accuracy. Our study thus provides critical insights into the potential of prompting for improving zero-shot VQA performance.

In recent years, a significant number of high-quality pretrained models have emerged, greatly impacting Natural Language Understanding (NLU), Natural Language Generation (NLG), and Text Representation tasks. Traditionally, these models are pretrained on custom domain corpora and finetuned for specific tasks, resulting in high costs related to GPU usage and labor. Unfortunately, recent trends in language modeling have shifted towards enhancing performance through scaling, further exacerbating the associated costs. Introducing GUR: a pretraining framework that combines language modeling and contrastive learning objectives in a single training step. We select similar text pairs based on their Longest Common Substring (LCS) from raw unlabeled documents and train the model using masked language modeling and unsupervised contrastive learning. The resulting model, GUR, achieves impressive results without any labeled training data, outperforming all other pretrained baselines as a retriever at the recall benchmark in a zero-shot setting. Additionally, GUR maintains its language modeling ability, as demonstrated in our ablation experiment. Our code is available at \url{//github.com/laohur/GUR}.

Knowledge base question answering (KBQA) aims to answer a question over a knowledge base (KB). Recently, a large number of studies focus on semantically or syntactically complicated questions. In this paper, we elaborately summarize the typical challenges and solutions for complex KBQA. We begin with introducing the background about the KBQA task. Next, we present the two mainstream categories of methods for complex KBQA, namely semantic parsing-based (SP-based) methods and information retrieval-based (IR-based) methods. We then review the advanced methods comprehensively from the perspective of the two categories. Specifically, we explicate their solutions to the typical challenges. Finally, we conclude and discuss some promising directions for future research.

Collecting supporting evidence from large corpora of text (e.g., Wikipedia) is of great challenge for open-domain Question Answering (QA). Especially, for multi-hop open-domain QA, scattered evidence pieces are required to be gathered together to support the answer extraction. In this paper, we propose a new retrieval target, hop, to collect the hidden reasoning evidence from Wikipedia for complex question answering. Specifically, the hop in this paper is defined as the combination of a hyperlink and the corresponding outbound link document. The hyperlink is encoded as the mention embedding which models the structured knowledge of how the outbound link entity is mentioned in the textual context, and the corresponding outbound link document is encoded as the document embedding representing the unstructured knowledge within it. Accordingly, we build HopRetriever which retrieves hops over Wikipedia to answer complex questions. Experiments on the HotpotQA dataset demonstrate that HopRetriever outperforms previously published evidence retrieval methods by large margins. Moreover, our approach also yields quantifiable interpretations of the evidence collection process.

Neural network models usually suffer from the challenge of incorporating commonsense knowledge into the open-domain dialogue systems. In this paper, we propose a novel knowledge-aware dialogue generation model (called TransDG), which transfers question representation and knowledge matching abilities from knowledge base question answering (KBQA) task to facilitate the utterance understanding and factual knowledge selection for dialogue generation. In addition, we propose a response guiding attention and a multi-step decoding strategy to steer our model to focus on relevant features for response generation. Experiments on two benchmark datasets demonstrate that our model has robust superiority over compared methods in generating informative and fluent dialogues. Our code is available at //github.com/siat-nlp/TransDG.

With the rise of knowledge graph (KG), question answering over knowledge base (KBQA) has attracted increasing attention in recent years. Despite much research has been conducted on this topic, it is still challenging to apply KBQA technology in industry because business knowledge and real-world questions can be rather complicated. In this paper, we present AliMe-KBQA, a bold attempt to apply KBQA in the E-commerce customer service field. To handle real knowledge and questions, we extend the classic "subject-predicate-object (SPO)" structure with property hierarchy, key-value structure and compound value type (CVT), and enhance traditional KBQA with constraints recognition and reasoning ability. We launch AliMe-KBQA in the Marketing Promotion scenario for merchants during the "Double 11" period in 2018 and other such promotional events afterwards. Online results suggest that AliMe-KBQA is not only able to gain better resolution and improve customer satisfaction, but also becomes the preferred knowledge management method by business knowledge staffs since it offers a more convenient and efficient management experience.

Incorporating knowledge graph into recommender systems has attracted increasing attention in recent years. By exploring the interlinks within a knowledge graph, the connectivity between users and items can be discovered as paths, which provide rich and complementary information to user-item interactions. Such connectivity not only reveals the semantics of entities and relations, but also helps to comprehend a user's interest. However, existing efforts have not fully explored this connectivity to infer user preferences, especially in terms of modeling the sequential dependencies within and holistic semantics of a path. In this paper, we contribute a new model named Knowledge-aware Path Recurrent Network (KPRN) to exploit knowledge graph for recommendation. KPRN can generate path representations by composing the semantics of both entities and relations. By leveraging the sequential dependencies within a path, we allow effective reasoning on paths to infer the underlying rationale of a user-item interaction. Furthermore, we design a new weighted pooling operation to discriminate the strengths of different paths in connecting a user with an item, endowing our model with a certain level of explainability. We conduct extensive experiments on two datasets about movie and music, demonstrating significant improvements over state-of-the-art solutions Collaborative Knowledge Base Embedding and Neural Factorization Machine.

The potential of graph convolutional neural networks for the task of zero-shot learning has been demonstrated recently. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, knowledge from distant nodes can get diluted when propagating through intermediate nodes, because current approaches to zero-shot learning use graph propagation schemes that perform Laplacian smoothing at each layer. We show that extensive smoothing does not help the task of regressing classifier weights in zero-shot learning. In order to still incorporate information from distant nodes and utilize the graph structure, we propose an Attentive Dense Graph Propagation Module (ADGPM). ADGPM allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants and an attention scheme is further used to weigh their contribution depending on the distance to the node. Finally, we illustrate that finetuning of the feature representation after training the ADGPM leads to considerable improvements. Our method achieves competitive results, outperforming previous zero-shot learning approaches.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司