亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Domain generalization (DG) aims to generalize a model trained on multiple source (i.e., training) domains to a distributionally different target (i.e., test) domain. In contrast to the conventional DG that strictly requires the availability of multiple source domains, this paper considers a more realistic yet challenging scenario, namely Single Domain Generalization (Single-DG), where only one source domain is available for training. In this scenario, the limited diversity may jeopardize the model generalization on unseen target domains. To tackle this problem, we propose a style-complement module to enhance the generalization power of the model by synthesizing images from diverse distributions that are complementary to the source ones. More specifically, we adopt a tractable upper bound of mutual information (MI) between the generated and source samples and perform a two-step optimization iteratively: (1) by minimizing the MI upper bound approximation for each sample pair, the generated images are forced to be diversified from the source samples; (2) subsequently, we maximize the MI between the samples from the same semantic category, which assists the network to learn discriminative features from diverse-styled images. Extensive experiments on three benchmark datasets demonstrate the superiority of our approach, which surpasses the state-of-the-art single-DG methods by up to 25.14%.

相關內容

Domain Generalization (DG) aims to train a model, from multiple observed source domains, in order to perform well on unseen target domains. To obtain the generalization capability, prior DG approaches have focused on extracting domain-invariant information across sources to generalize on target domains, while useful domain-specific information which strongly correlates with labels in individual domains and the generalization to target domains is usually ignored. In this paper, we propose meta-Domain Specific-Domain Invariant (mDSDI) - a novel theoretically sound framework that extends beyond the invariance view to further capture the usefulness of domain-specific information. Our key insight is to disentangle features in the latent space while jointly learning both domain-invariant and domain-specific features in a unified framework. The domain-specific representation is optimized through the meta-learning framework to adapt from source domains, targeting a robust generalization on unseen domains. We empirically show that mDSDI provides competitive results with state-of-the-art techniques in DG. A further ablation study with our generated dataset, Background-Colored-MNIST, confirms the hypothesis that domain-specific is essential, leading to better results when compared with only using domain-invariant.

With the goal of directly generalizing trained models to unseen target domains, domain generalization (DG), a newly proposed learning paradigm, has attracted considerable attention. Previous DG models usually require a sufficient quantity of annotated samples from observed source domains during training. In this paper, we relax this requirement about full annotation and investigate semi-supervised domain generalization (SSDG) where only one source domain is fully annotated along with the other domains totally unlabeled in the training process. With the challenges of tackling the domain gap between observed source domains and predicting unseen target domains, we propose a novel deep framework via joint domain-aware labels and dual-classifier to produce high-quality pseudo-labels. Concretely, to predict accurate pseudo-labels under domain shift, a domain-aware pseudo-labeling module is developed. Also, considering inconsistent goals between generalization and pseudo-labeling: former prevents overfitting on all source domains while latter might overfit the unlabeled source domains for high accuracy, we employ a dual-classifier to independently perform pseudo-labeling and domain generalization in the training process. Extensive results on publicly available DG benchmark datasets show the efficacy of our proposed SSDG method compared to the well-designed baselines and the state-of-the-art semi-supervised learning methods.

In this work, we investigate the unexplored intersection of domain generalization and data-free learning. In particular, we address the question: How can knowledge contained in models trained on different source data domains can be merged into a single model that generalizes well to unseen target domains, in the absence of source and target domain data? Machine learning models that can cope with domain shift are essential for for real-world scenarios with often changing data distributions. Prior domain generalization methods typically rely on using source domain data, making them unsuitable for private decentralized data. We define the novel problem of Data-Free Domain Generalization (DFDG), a practical setting where models trained on the source domains separately are available instead of the original datasets, and investigate how to effectively solve the domain generalization problem in that case. We propose DEKAN, an approach that extracts and fuses domain-specific knowledge from the available teacher models into a student model robust to domain shift. Our empirical evaluation demonstrates the effectiveness of our method which achieves first state-of-the-art results in DFDG by significantly outperforming ensemble and data-free knowledge distillation baselines.

Few-shot slot tagging is an emerging research topic in the field of Natural Language Understanding (NLU). With sufficient annotated data from source domains, the key challenge is how to train and adapt the model to another target domain which only has few labels. Conventional few-shot approaches use all the data from the source domains without considering inter-domain relations and implicitly assume each sample in the domain contributes equally. However, our experiments show that the data distribution bias among different domains will significantly affect the adaption performance. Moreover, transferring knowledge from dissimilar domains will even introduce some extra noises so that affect the performance of models. To tackle this problem, we propose an effective similarity-based method to select data from the source domains. In addition, we propose a Shared-Private Network (SP-Net) for the few-shot slot tagging task. The words from the same class would have some shared features. We extract those shared features from the limited annotated data on the target domain and merge them together as the label embedding to help us predict other unlabelled data on the target domain. The experiment shows that our method outperforms the state-of-the-art approaches with fewer source data. The result also proves that some training data from dissimilar sources are redundant and even negative for the adaption.

Domain generalization aims to learn a generalizable model from a known source domain for various unknown target domains. It has been studied widely by domain randomization that transfers source images to different styles in spatial space for learning domain-agnostic features. However, most existing randomization uses GANs that often lack of controls and even alter semantic structures of images undesirably. Inspired by the idea of JPEG that converts spatial images into multiple frequency components (FCs), we propose Frequency Space Domain Randomization (FSDR) that randomizes images in frequency space by keeping domain-invariant FCs (DIFs) and randomizing domain-variant FCs (DVFs) only. FSDR has two unique features: 1) it decomposes images into DIFs and DVFs which allows explicit access and manipulation of them and more controllable randomization; 2) it has minimal effects on semantic structures of images and domain-invariant features. We examined domain variance and invariance property of FCs statistically and designed a network that can identify and fuse DIFs and DVFs dynamically through iterative learning. Extensive experiments over multiple domain generalizable segmentation tasks show that FSDR achieves superior segmentation and its performance is even on par with domain adaptation methods that access target data in training.

Domain shift is a fundamental problem in visual recognition which typically arises when the source and target data follow different distributions. The existing domain adaptation approaches which tackle this problem work in the closed-set setting with the assumption that the source and the target data share exactly the same classes of objects. In this paper, we tackle a more realistic problem of open-set domain shift where the target data contains additional classes that are not present in the source data. More specifically, we introduce an end-to-end Progressive Graph Learning (PGL) framework where a graph neural network with episodic training is integrated to suppress underlying conditional shift and adversarial learning is adopted to close the gap between the source and target distributions. Compared to the existing open-set adaptation approaches, our approach guarantees to achieve a tighter upper bound of the target error. Extensive experiments on three standard open-set benchmarks evidence that our approach significantly outperforms the state-of-the-arts in open-set domain adaptation.

We aim at the problem named One-Shot Unsupervised Domain Adaptation. Unlike traditional Unsupervised Domain Adaptation, it assumes that only one unlabeled target sample can be available when learning to adapt. This setting is realistic but more challenging, in which conventional adaptation approaches are prone to failure due to the scarce of unlabeled target data. To this end, we propose a novel Adversarial Style Mining approach, which combines the style transfer module and task-specific module into an adversarial manner. Specifically, the style transfer module iteratively searches for harder stylized images around the one-shot target sample according to the current learning state, leading the task model to explore the potential styles that are difficult to solve in the almost unseen target domain, thus boosting the adaptation performance in a data-scarce scenario. The adversarial learning framework makes the style transfer module and task-specific module benefit each other during the competition. Extensive experiments on both cross-domain classification and segmentation benchmarks verify that ASM achieves state-of-the-art adaptation performance under the challenging one-shot setting.

Learning to classify unseen class samples at test time is popularly referred to as zero-shot learning (ZSL). If test samples can be from training (seen) as well as unseen classes, it is a more challenging problem due to the existence of strong bias towards seen classes. This problem is generally known as \emph{generalized} zero-shot learning (GZSL). Thanks to the recent advances in generative models such as VAEs and GANs, sample synthesis based approaches have gained considerable attention for solving this problem. These approaches are able to handle the problem of class bias by synthesizing unseen class samples. However, these ZSL/GZSL models suffer due to the following key limitations: $(i)$ Their training stage learns a class-conditioned generator using only \emph{seen} class data and the training stage does not \emph{explicitly} learn to generate the unseen class samples; $(ii)$ They do not learn a generic optimal parameter which can easily generalize for both seen and unseen class generation; and $(iii)$ If we only have access to a very few samples per seen class, these models tend to perform poorly. In this paper, we propose a meta-learning based generative model that naturally handles these limitations. The proposed model is based on integrating model-agnostic meta learning with a Wasserstein GAN (WGAN) to handle $(i)$ and $(iii)$, and uses a novel task distribution to handle $(ii)$. Our proposed model yields significant improvements on standard ZSL as well as more challenging GZSL setting. In ZSL setting, our model yields 4.5\%, 6.0\%, 9.8\%, and 27.9\% relative improvements over the current state-of-the-art on CUB, AWA1, AWA2, and aPY datasets, respectively.

This paper studies the problem of domain division problem which aims to segment instances drawn from different probabilistic distributions. Such a problem exists in many previous recognition tasks, such as Open Set Learning (OSL) and Generalized Zero-Shot Learning (G-ZSL), where the testing instances come from either seen or novel/unseen classes of different probabilistic distributions. Previous works focused on either only calibrating the confident prediction of classifiers of seen classes (W-SVM), or taking unseen classes as outliers. In contrast, this paper proposes a probabilistic way of directly estimating and fine-tuning the decision boundary between seen and novel/unseen classes. In particular, we propose a domain division algorithm of learning to split the testing instances into known, unknown and uncertain domains, and then conduct recognize tasks in each domain. Two statistical tools, namely, bootstrapping and Kolmogorov-Smirnov (K-S) Test, for the first time, are introduced to discover and fine-tune the decision boundary of each domain. Critically, the uncertain domain is newly introduced in our framework to adopt those instances whose domain cannot be predicted confidently. Extensive experiments demonstrate that our approach achieved the state-of-the-art performance on OSL and G-ZSL benchmarks.

Domain Adaptation is an actively researched problem in Computer Vision. In this work, we propose an approach that leverages unsupervised data to bring the source and target distributions closer in a learned joint feature space. We accomplish this by inducing a symbiotic relationship between the learned embedding and a generative adversarial network. This is in contrast to methods which use the adversarial framework for realistic data generation and retraining deep models with such data. We demonstrate the strength and generality of our approach by performing experiments on three different tasks with varying levels of difficulty: (1) Digit classification (MNIST, SVHN and USPS datasets) (2) Object recognition using OFFICE dataset and (3) Domain adaptation from synthetic to real data. Our method achieves state-of-the art performance in most experimental settings and by far the only GAN-based method that has been shown to work well across different datasets such as OFFICE and DIGITS.

北京阿比特科技有限公司