亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Highly oscillatory differential equations present significant challenges in numerical treatments. The Modulated Fourier Expansion (MFE), used as an ansatz, is a commonly employed tool as a numerical approximation method. In this article, the Modulated Fourier Expansion is analytically derived for a linear partial differential equation with a multifrequency highly oscillatory potential. The solution of the equation is expressed as a convergent Neumann series within the appropriate Sobolev space. The proposed approach enables, firstly, to derive a general formula for the error associated with the approximation of the solution by MFE, and secondly, to determine the coefficients for this expansion -- without the need to solve numerically the system of differential equations to find the coefficients of MFE. Numerical experiments illustrate the theoretical investigations.

相關內容

There are various applications, where companies need to decide to which individuals they should best allocate treatment. To support such decisions, uplift models are applied to predict treatment effects on an individual level. Based on the predicted treatment effects, individuals can be ranked and treatment allocation can be prioritized according to this ranking. An implicit assumption, which has not been doubted in the previous uplift modeling literature, is that this treatment prioritization approach tends to bring individuals with high treatment effects to the top and individuals with low treatment effects to the bottom of the ranking. In our research, we show that heteroskedastictity in the training data can cause a bias of the uplift model ranking: individuals with the highest treatment effects can get accumulated in large numbers at the bottom of the ranking. We explain theoretically how heteroskedasticity can bias the ranking of uplift models and show this process in a simulation and on real-world data. We argue that this problem of ranking bias due to heteroskedasticity might occur in many real-world applications and requires modification of the treatment prioritization to achieve an efficient treatment allocation.

We give a recursive construction for projective Reed-Muller codes in terms of affine Reed-Muller codes and projective Reed-Muller codes in fewer variables. From this construction, we obtain the dimension of the subfield subcodes of projective Reed-Muller codes for some particular degrees that give codes with good parameters. Moreover, from this recursive construction we are able to derive a lower bound for the generalized Hamming weights of projective Reed-Muller codes which, together with the basic properties of the generalized Hamming weights, allows us to determine most of the weight hierarchy of projective Reed-Muller codes in many cases.

As a surrogate for computationally intensive meso-scale simulation of woven composites, this article presents Recurrent Neural Network (RNN) models. Leveraging the power of transfer learning, the initialization challenges and sparse data issues inherent in cyclic shear strain loads are addressed in the RNN models. A mean-field model generates a comprehensive data set representing elasto-plastic behavior. In simulations, arbitrary six-dimensional strain histories are used to predict stresses under random walking as the source task and cyclic loading conditions as the target task. Incorporating sub-scale properties enhances RNN versatility. In order to achieve accurate predictions, the model uses a grid search method to tune network architecture and hyper-parameter configurations. The results of this study demonstrate that transfer learning can be used to effectively adapt the RNN to varying strain conditions, which establishes its potential as a useful tool for modeling path-dependent responses in woven composites.

The locations of different mRNA molecules can be revealed by multiplexed in situ RNA detection. By assigning detected mRNA molecules to individual cells, it is possible to identify many different cell types in parallel. This in turn enables investigation of the spatial cellular architecture in tissue, which is crucial for furthering our understanding of biological processes and diseases. However, cell typing typically depends on the segmentation of cell nuclei, which is often done based on images of a DNA stain, such as DAPI. Limiting cell definition to a nuclear stain makes it fundamentally difficult to determine accurate cell borders, and thereby also difficult to assign mRNA molecules to the correct cell. As such, we have developed a computational tool that segments cells solely based on the local composition of mRNA molecules. First, a small neural network is trained to compute attractive and repulsive edges between pairs of mRNA molecules. The signed graph is then partitioned by a mutex watershed into components corresponding to different cells. We evaluated our method on two publicly available datasets and compared it against the current state-of-the-art and older baselines. We conclude that combining neural networks with combinatorial optimization is a promising approach for cell segmentation of in situ transcriptomics data.

We consider the application of finite element exterior calculus (FEEC) methods to a class of canonical Hamiltonian PDE systems involving differential forms. Solutions to these systems satisfy a local multisymplectic conservation law, which generalizes the more familiar symplectic conservation law for Hamiltonian systems of ODEs, and which is connected with physically-important reciprocity phenomena, such as Lorentz reciprocity in electromagnetics. We characterize hybrid FEEC methods whose numerical traces satisfy a version of the multisymplectic conservation law, and we apply this characterization to several specific classes of FEEC methods, including conforming Arnold-Falk-Winther-type methods and various hybridizable discontinuous Galerkin (HDG) methods. Interestingly, the HDG-type and other nonconforming methods are shown, in general, to be multisymplectic in a stronger sense than the conforming FEEC methods. This substantially generalizes previous work of McLachlan and Stern [Found. Comput. Math., 20 (2020), pp. 35-69] on the more restricted class of canonical Hamiltonian PDEs in the de Donder-Weyl "grad-div" form.

The continuous-time Markov chain (CTMC) is the mathematical workhorse of evolutionary biology. Learning CTMC model parameters using modern, gradient-based methods requires the derivative of the matrix exponential evaluated at the CTMC's infinitesimal generator (rate) matrix. Motivated by the derivative's extreme computational complexity as a function of state space cardinality, recent work demonstrates the surprising effectiveness of a naive, first-order approximation for a host of problems in computational biology. In response to this empirical success, we obtain rigorous deterministic and probabilistic bounds for the error accrued by the naive approximation and establish a "blessing of dimensionality" result that is universal for a large class of rate matrices with random entries. Finally, we apply the first-order approximation within surrogate-trajectory Hamiltonian Monte Carlo for the analysis of the early spread of SARS-CoV-2 across 44 geographic regions that comprise a state space of unprecedented dimensionality for unstructured (flexible) CTMC models within evolutionary biology.

Robust Markov Decision Processes (RMDPs) are a widely used framework for sequential decision-making under parameter uncertainty. RMDPs have been extensively studied when the objective is to maximize the discounted return, but little is known for average optimality (optimizing the long-run average of the rewards obtained over time) and Blackwell optimality (remaining discount optimal for all discount factors sufficiently close to 1). In this paper, we prove several foundational results for RMDPs beyond the discounted return. We show that average optimal policies can be chosen stationary and deterministic for sa-rectangular RMDPs but, perhaps surprisingly, that history-dependent (Markovian) policies strictly outperform stationary policies for average optimality in s-rectangular RMDPs. We also study Blackwell optimality for sa-rectangular RMDPs, where we show that {\em approximate} Blackwell optimal policies always exist, although Blackwell optimal policies may not exist. We also provide a sufficient condition for their existence, which encompasses virtually any examples from the literature. We then discuss the connection between average and Blackwell optimality, and we describe several algorithms to compute the optimal average return. Interestingly, our approach leverages the connections between RMDPs and stochastic games.

Recent work has proposed solving the k-means clustering problem on quantum computers via the Quantum Approximate Optimization Algorithm (QAOA) and coreset techniques. Although the current method demonstrates the possibility of quantum k-means clustering, it does not ensure high accuracy and consistency across a wide range of datasets. The existing coreset techniques are designed for classical algorithms and there has been no quantum-tailored coreset technique which is designed to boost the accuracy of quantum algorithms. In this work, we propose solving the k-means clustering problem with the variational quantum eigensolver (VQE) and a customised coreset method, the Contour coreset, which has been formulated with specific focus on quantum algorithms. Extensive simulations with synthetic and real-life data demonstrated that our VQE+Contour Coreset approach outperforms existing QAOA+Coreset k-means clustering approaches with higher accuracy and lower standard deviation. Our work has shown that quantum tailored coreset techniques has the potential to significantly boost the performance of quantum algorithms when compared to using generic off-the-shelf coreset techniques.

We introduce a new Projected Rayleigh Quotient Iteration aimed at improving the convergence behaviour of classic Rayleigh Quotient iteration (RQI) by incorporating approximate information about the target eigenvector at each step. While classic RQI exhibits local cubic convergence for Hermitian matrices, its global behaviour can be unpredictable, whereby it may converge to an eigenvalue far away from the target, even when started with accurate initial conditions. This problem is exacerbated when the eigenvalues are closely spaced. The key idea of the new algorithm is at each step to add a complex-valued projection to the original matrix (that depends on the current eigenvector approximation), such that the unwanted eigenvalues are lifted into the complex plane while the target stays close to the real line, thereby increasing the spacing between the target eigenvalue and the rest of the spectrum. Making better use of the eigenvector approximation leads to more robust convergence behaviour and the new method converges reliably to the correct target eigenpair for a significantly wider range of initial vectors than does classic RQI. We prove that the method converges locally cubically and we present several numerical examples demonstrating the improved global convergence behaviour. In particular, we apply it to compute eigenvalues in a band-gap spectrum of a Sturm-Liouville operator used to model photonic crystal fibres, where the target and unwanted eigenvalues are closely spaced. The examples show that the new method converges to the desired eigenpair even when the eigenvalue spacing is very small, often succeeding when classic RQI fails.

Positron Emission Tomography (PET) enables functional imaging of deep brain structures, but the bulk and weight of current systems preclude their use during many natural human activities, such as locomotion. The proposed long-term solution is to construct a robotic system that can support an imaging system surrounding the subject's head, and then move the system to accommodate natural motion. This requires a system to measure the motion of the head with respect to the imaging ring, for use by both the robotic system and the image reconstruction software. We report here the design and experimental evaluation of a parallel string encoder mechanism for sensing this motion. Our preliminary results indicate that the measurement system may achieve accuracy within 0.5 mm, especially for small motions, with improved accuracy possible through kinematic calibration.

北京阿比特科技有限公司