Millimeter-wave (mmWave) multiple-input multiple-output (MIMO) communication with the advanced beamforming technologies is a key enabler to meet the growing demands of future mobile communication. However, the dynamic nature of cellular channels in large-scale urban mmWave MIMO communication scenarios brings substantial challenges, particularly in terms of complexity and robustness. To address these issues, we propose a robust gradient-based liquid neural network (GLNN) framework that utilizes ordinary differential equation-based liquid neurons to solve the beamforming problem. Specifically, our proposed GLNN framework takes gradients of the optimization objective function as inputs to extract the high-order channel feature information, and then introduces a residual connection to mitigate the training burden. Furthermore, we use the manifold learning technique to compress the search space of the beamforming problem. These designs enable the GLNN to effectively maintain low complexity while ensuring strong robustness to noisy and highly dynamic channels. Extensive simulation results demonstrate that the GLNN can achieve 4.15% higher spectral efficiency than that of typical iterative algorithms, and reduce the time consumption to only 1.61% that of conventional methods.
Since the creation of the Web, recommender systems (RSs) have been an indispensable mechanism in information filtering. State-of-the-art RSs primarily depend on categorical features, which ecoded by embedding vectors, resulting in excessively large embedding tables. To prevent over-parameterized embedding tables from harming scalability, both academia and industry have seen increasing efforts in compressing RS embeddings. However, despite the prosperity of lightweight embedding-based RSs (LERSs), a wide diversity is seen in evaluation protocols, resulting in obstacles when relating LERS performance to real-world usability. Moreover, despite the common goal of lightweight embeddings, LERSs are evaluated with a single choice between the two main recommendation tasks -- collaborative filtering and content-based recommendation. This lack of discussions on cross-task transferability hinders the development of unified, more scalable solutions. Motivated by these issues, this study investigates various LERSs' performance, efficiency, and cross-task transferability via a thorough benchmarking process. Additionally, we propose an efficient embedding compression method using magnitude pruning, which is an easy-to-deploy yet highly competitive baseline that outperforms various complex LERSs. Our study reveals the distinct performance of LERSs across the two tasks, shedding light on their effectiveness and generalizability. To support edge-based recommendations, we tested all LERSs on a Raspberry Pi 4, where the efficiency bottleneck is exposed. Finally, we conclude this paper with critical summaries of LERS performance, model selection suggestions, and underexplored challenges around LERSs for future research. To encourage future research, we publish source codes and artifacts at \href{this link}{//github.com/chenxing1999/recsys-benchmark}.
Brain-computer interfaces (BCIs) harness electroencephalographic signals for direct neural control of devices, offering a significant benefit for individuals with motor impairments. Traditional machine learning methods for EEG-based motor imagery (MI) classification encounter challenges such as manual feature extraction and susceptibility to noise.This paper introduces EEGEncoder, a deep learning framework that employs modified transformers and TCNs to surmount these limitations. We innovatively propose a fusion architecture, namely Dual-Stream Temporal-Spatial Block (DSTS), to capture temporal and spatial features, improving the accuracy of Motor Imagery classification task. Additionally, we use multiple parallel structures to enhance the performance of the model. When tested on the BCI Competition IV-2a dataset, our model results outperform current state-of-the-art techniques.
Label scarcity problem is the main challenge that hinders the wide application of deep learning systems in automatic cardiovascular diseases (CVDs) detection using electrocardiography (ECG). Tuning pre-trained models alleviates this problem by transferring knowledge learned from large datasets to downstream small datasets. However, bottlenecks in computational efficiency and CVDs detection performance limit its clinical applications. It is difficult to improve the detection performance without significantly sacrificing model computational efficiency. Here, we propose a computation-efficient semi-supervised learning paradigm (FastECG) for robust and computation-efficient CVDs detection using ECG. It enables a robust adaptation of pre-trained models on downstream datasets with limited supervision and high computational efficiency. First, a random-deactivation technique is developed to achieve robust and fast low-rank adaptation of pre-trained weights. Subsequently, we propose a one-shot rank allocation module to determine the optimal ranks for the update matrices of the pre-trained weights. Finally, a lightweight semi-supervised learning pipeline is introduced to enhance model performance by leveraging labeled and unlabeled data with high computational efficiency. Extensive experiments on four downstream ECG datasets demonstrate that FastECG not only outperforms the state-of-the-art methods in multi-label CVDs detection but also consumes fewer GPU footprints, training time, and parameter storage space. As such, this paradigm provides an effective solution for achieving high computational efficiency and robust detection performance in the clinical applications of pre-trained models under limited supervision.
Monte Carlo (MC) sampling is a popular method for estimating the statistics (e.g. expectation and variance) of a random variable. Its slow convergence has led to the emergence of advanced techniques to reduce the variance of the MC estimator for the outputs of computationally expensive solvers. The control variates (CV) method corrects the MC estimator with a term derived from auxiliary random variables that are highly correlated with the original random variable. These auxiliary variables may come from surrogate models. Such a surrogate-based CV strategy is extended here to the multilevel Monte Carlo (MLMC) framework, which relies on a sequence of levels corresponding to numerical simulators with increasing accuracy and computational cost. MLMC combines output samples obtained across levels, into a telescopic sum of differences between MC estimators for successive fidelities. In this paper, we introduce three multilevel variance reduction strategies that rely on surrogate-based CV and MLMC. MLCV is presented as an extension of CV where the correction terms devised from surrogate models for simulators of different levels add up. MLMC-CV improves the MLMC estimator by using a CV based on a surrogate of the correction term at each level. Further variance reduction is achieved by using the surrogate-based CVs of all the levels in the MLMC-MLCV strategy. Alternative solutions that reduce the subset of surrogates used for the multilevel estimation are also introduced. The proposed methods are tested on a test case from the literature consisting of a spectral discretization of an uncertain 1D heat equation, where the statistic of interest is the expected value of the integrated temperature along the domain at a given time. The results are assessed in terms of the accuracy and computational cost of the multilevel estimators, depending on whether the construction of the surrogates, and the associated computational cost, precede the evaluation of the estimator. It was shown that when the lower fidelity outputs are strongly correlated with the high-fidelity outputs, a significant variance reduction is obtained when using surrogate models for the coarser levels only. It was also shown that taking advantage of pre-existing surrogate models proves to be an even more efficient strategy.
Military software defined radio (SDR) systems are a major factor in future network-centric operations due to their flexibility and support for more capable radio communications systems. The inherent nature of software-based systems requires a more complex auxiliary infrastructure and multiple independent levels of security compared with typical systems: Secure booting of the SDR device, cryptographically signed software, real time operating platform software as well as radio applications. This technology raises new challenges with respect to the management. The largest impact on SDR deployments is due to the auxiliary cryptographic infrastructure for the security of the software life cycle and the cyclic update of the keys. Compared to conventional radio devices, the SDR system with the cryptographic infrastructure described in this paper reaches a higher security level and is more flexible. The advantage is the possibility to deploy trunked radio system and further waveforms, such as coalition wideband, which will be standardized in the future. Also it is possible to update cryptographic mechanisms. In this work, we analyze the requirements for a high secure SDR deployment and model the life cycle of the components of a deployed SDR node based on the Joint Program Executive Office (JPEO) Software Communication Architecture (SCA).
Multiple-input multiple-output (MIMO) has been a key technology of wireless communications for decades. A typical MIMO system employs antenna arrays with the inter-antenna spacing being half of the signal wavelength, which we term as compact MIMO. Looking forward towards the future sixth-generation (6G) mobile communication networks, MIMO system will achieve even finer spatial resolution to not only enhance the spectral efficiency of wireless communications, but also enable more accurate wireless sensing. To this end, by removing the restriction of half-wavelength antenna spacing, sparse MIMO has been proposed as a new architecture that is able to significantly enlarge the array aperture as compared to conventional compact MIMO with the same number of array elements. In addition, sparse MIMO leads to a new form of virtual MIMO systems for sensing with their virtual apertures considerably larger than physical apertures. As sparse MIMO is expected to be a viable technology for 6G, we provide in this article a comprehensive overview of it, especially focusing on its appealing advantages for integrated sensing and communication (ISAC) towards 6G. Specifically, assorted sparse MIMO architectures are first introduced, followed by their new benefits as well as challenges. We then discuss the main design issues of sparse MIMO, including beam pattern synthesis, signal processing, grating lobe suppression, beam codebook design, and array geometry optimization. Last, we provide numerical results to evaluate the performance of sparse MIMO for ISAC and point out promising directions for future research.
Finetuning language models (LMs) is crucial for adapting the models to downstream data and tasks. However, full finetuning is usually costly. Existing work, such as parameter-efficient finetuning (PEFT), often focuses on \textit{how to finetune} but neglects the issue of \textit{where to finetune}. As a pioneering work on answering where to finetune (at the layer level), we conduct a semantic analysis of the LM inference process. We first propose a virtual transition of the latent representation and then trace its factual transition. Based on the deviation in transitions, we estimate the gain of finetuning each model layer, and further, narrow down the scope for finetuning. We perform extensive experiments across well-known LMs and datasets. The results show that our approach is effective and efficient, and outperforms the existing baselines. Our approach is orthogonal to existing efficient techniques, such as PEFT methods, offering practical values on LM finetuning.
Multiple instance learning (MIL) is a powerful tool to solve the weakly supervised classification in whole slide image (WSI) based pathology diagnosis. However, the current MIL methods are usually based on independent and identical distribution hypothesis, thus neglect the correlation among different instances. To address this problem, we proposed a new framework, called correlated MIL, and provided a proof for convergence. Based on this framework, we devised a Transformer based MIL (TransMIL), which explored both morphological and spatial information. The proposed TransMIL can effectively deal with unbalanced/balanced and binary/multiple classification with great visualization and interpretability. We conducted various experiments for three different computational pathology problems and achieved better performance and faster convergence compared with state-of-the-art methods. The test AUC for the binary tumor classification can be up to 93.09% over CAMELYON16 dataset. And the AUC over the cancer subtypes classification can be up to 96.03% and 98.82% over TCGA-NSCLC dataset and TCGA-RCC dataset, respectively.
The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.
Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.