Sequential recommender systems (SRSs) aim to predict the subsequent items which may interest users via comprehensively modeling users' complex preference embedded in the sequence of user-item interactions. However, most of existing SRSs often model users' single low-level preference based on item ID information while ignoring the high-level preference revealed by item attribute information, such as item category. Furthermore, they often utilize limited sequence context information to predict the next item while overlooking richer inter-item semantic relations. To this end, in this paper, we proposed a novel hierarchical preference modeling framework to substantially model the complex low- and high-level preference dynamics for accurate sequential recommendation. Specifically, in the framework, a novel dual-transformer module and a novel dual contrastive learning scheme have been designed to discriminatively learn users' low- and high-level preference and to effectively enhance both low- and high-level preference learning respectively. In addition, a novel semantics-enhanced context embedding module has been devised to generate more informative context embedding for further improving the recommendation performance. Extensive experiments on six real-world datasets have demonstrated both the superiority of our proposed method over the state-of-the-art ones and the rationality of our design.
Accurate estimation of a user's biological joint moment from wearable sensor data is vital for improving exoskeleton control during real-world locomotor tasks. However, most state-of-the-art methods rely on deep learning techniques that necessitate extensive in-lab data collection, posing challenges in acquiring sufficient data to develop robust models. To address this challenge, we introduce a locomotor task set optimization strategy designed to identify a minimal, yet representative, set of tasks that preserves model performance while significantly reducing the data collection burden. In this optimization, we performed a cluster analysis on the dimensionally reduced biomechanical features of various cyclic and non-cyclic tasks. We identified the minimal viable clusters (i.e., tasks) to train a neural network for estimating hip joint moments and evaluated its performance. Our cross-validation analysis across subjects showed that the optimized task set-based model achieved a root mean squared error of 0.30$\pm$0.05 Nm/kg. This performance was significantly better than using only cyclic tasks (p<0.05) and was comparable to using the full set of tasks. Our results demonstrate the ability to maintain model accuracy while significantly reducing the cost associated with data collection and model training. This highlights the potential for future exoskeleton designers to leverage this strategy to minimize the data requirements for deep learning-based models in wearable robot control.
Visualization authoring is an iterative process requiring users to modify parameters like color schemes and data transformations to achieve desired aesthetics and effectively convey insights. Due to the complexity of these adjustments, users often create defective visualizations and require troubleshooting support. In this paper, we examine two primary approaches for visualization troubleshooting: (1) Human-assisted support via forums, where users receive advice from other individuals, and (2) AI-assisted support using large language models (LLMs). Our goal is to understand the strengths and limitations of each approach in supporting visualization troubleshooting tasks. To this end, we collected 889 Vega-Lite cases from Stack Overflow. We then conducted a comprehensive analysis to understand the types of questions users ask, the effectiveness of human and AI guidance, and the impact of supplementary resources, such as documentation and examples, on troubleshooting outcomes. Our findings reveal a striking contrast between human- and AI-assisted troubleshooting: Human-assisted troubleshooting provides tailored, context-sensitive advice but often varies in response quality, while AI-assisted troubleshooting offers rapid feedback but often requires additional contextual resources to achieve desired results.
Fluid antenna systems (FASs) can reconfigure their antenna locations freely within a spatially continuous space. To keep favorable antenna positions, the channel state information (CSI) acquisition for FASs is essential. While some techniques have been proposed, most existing FAS channel estimators require several channel assumptions, such as slow variation and angular-domain sparsity. When these assumptions are not reasonable, the model mismatch may lead to unpredictable performance losses. In this paper, we propose the successive Bayesian reconstructor (S-BAR) as a general solution to estimate FAS channels. Unlike model-based estimators, the proposed S-BAR is prior-aided, which builds the experiential kernel for CSI acquisition. Inspired by Bayesian regression, the key idea of S-BAR is to model the FAS channels as a stochastic process, whose uncertainty can be successively eliminated by kernel-based sampling and regression. In this way, the predictive mean of the regressed stochastic process can be viewed as a Bayesian channel estimator. Simulation results verify that, in both model-mismatched and model-matched cases, the proposed S-BAR can achieve higher estimation accuracy than the existing schemes.
Latent Gaussian process (GP) models are flexible probabilistic non-parametric function models. Vecchia approximations are accurate approximations for GPs to overcome computational bottlenecks for large data, and the Laplace approximation is a fast method with asymptotic convergence guarantees to approximate marginal likelihoods and posterior predictive distributions for non-Gaussian likelihoods. Unfortunately, the computational complexity of combined Vecchia-Laplace approximations grows faster than linearly in the sample size when used in combination with direct solver methods such as the Cholesky decomposition. Computations with Vecchia-Laplace approximations can thus become prohibitively slow precisely when the approximations are usually the most accurate, i.e., on large data sets. In this article, we present iterative methods to overcome this drawback. Among other things, we introduce and analyze several preconditioners, derive new convergence results, and propose novel methods for accurately approximating predictive variances. We analyze our proposed methods theoretically and in experiments with simulated and real-world data. In particular, we obtain a speed-up of an order of magnitude compared to Cholesky-based calculations and a threefold increase in prediction accuracy in terms of the continuous ranked probability score compared to a state-of-the-art method on a large satellite data set. All methods are implemented in a free C++ software library with high-level Python and R packages.
Generalization abilities of well-trained large language models (LLMs) are known to scale predictably as a function of model size. In contrast to the existence of practical scaling laws governing pre-training, the quality of LLMs after post-training compression remains highly unpredictable, often requiring case-by-case validation in practice. In this work, we attempted to close this gap for post-training weight quantization of LLMs by conducting a systematic empirical study on multiple LLM families quantized to numerous low-precision tensor data types using popular weight quantization techniques. We identified key scaling factors pertaining to characteristics of the local loss landscape, based on which the performance of quantized LLMs can be reasonably well predicted by a statistical model.
Current models for event causality identification (ECI) mainly adopt a supervised framework, which heavily rely on labeled data for training. Unfortunately, the scale of current annotated datasets is relatively limited, which cannot provide sufficient support for models to capture useful indicators from causal statements, especially for handing those new, unseen cases. To alleviate this problem, we propose a novel approach, shortly named CauSeRL, which leverages external causal statements for event causality identification. First of all, we design a self-supervised framework to learn context-specific causal patterns from external causal statements. Then, we adopt a contrastive transfer strategy to incorporate the learned context-specific causal patterns into the target ECI model. Experimental results show that our method significantly outperforms previous methods on EventStoryLine and Causal-TimeBank (+2.0 and +3.4 points on F1 value respectively).
To provide more accurate, diverse, and explainable recommendation, it is compulsory to go beyond modeling user-item interactions and take side information into account. Traditional methods like factorization machine (FM) cast it as a supervised learning problem, which assumes each interaction as an independent instance with side information encoded. Due to the overlook of the relations among instances or items (e.g., the director of a movie is also an actor of another movie), these methods are insufficient to distill the collaborative signal from the collective behaviors of users. In this work, we investigate the utility of knowledge graph (KG), which breaks down the independent interaction assumption by linking items with their attributes. We argue that in such a hybrid structure of KG and user-item graph, high-order relations --- which connect two items with one or multiple linked attributes --- are an essential factor for successful recommendation. We propose a new method named Knowledge Graph Attention Network (KGAT) which explicitly models the high-order connectivities in KG in an end-to-end fashion. It recursively propagates the embeddings from a node's neighbors (which can be users, items, or attributes) to refine the node's embedding, and employs an attention mechanism to discriminate the importance of the neighbors. Our KGAT is conceptually advantageous to existing KG-based recommendation methods, which either exploit high-order relations by extracting paths or implicitly modeling them with regularization. Empirical results on three public benchmarks show that KGAT significantly outperforms state-of-the-art methods like Neural FM and RippleNet. Further studies verify the efficacy of embedding propagation for high-order relation modeling and the interpretability benefits brought by the attention mechanism.
Providing model-generated explanations in recommender systems is important to user experience. State-of-the-art recommendation algorithms -- especially the collaborative filtering (CF) based approaches with shallow or deep models -- usually work with various unstructured information sources for recommendation, such as textual reviews, visual images, and various implicit or explicit feedbacks. Though structured knowledge bases were considered in content-based approaches, they have been largely ignored recently due to the availability of vast amount of data and the learning power of many complex models. However, structured knowledge bases exhibit unique advantages in personalized recommendation systems. When the explicit knowledge about users and items is considered for recommendation, the system could provide highly customized recommendations based on users' historical behaviors and the knowledge is helpful for providing informed explanations regarding the recommended items. In this work, we propose to reason over knowledge base embeddings for explainable recommendation. Specifically, we propose a knowledge base representation learning framework to embed heterogeneous entities for recommendation, and based on the embedded knowledge base, a soft matching algorithm is proposed to generate personalized explanations for the recommended items. Experimental results on real-world e-commerce datasets verified the superior recommendation performance and the explainability power of our approach compared with state-of-the-art baselines.
We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.
Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.