亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce a novel framework for decentralized projection-free optimization, extending projection-free methods to a broader class of upper-linearizable functions. Our approach leverages decentralized optimization techniques with the flexibility of upper-linearizable function frameworks, effectively generalizing traditional DR-submodular function optimization. We obtain the regret of $O(T^{1-\theta/2})$ with communication complexity of $O(T^{\theta})$ and number of linear optimization oracle calls of $O(T^{2\theta})$ for decentralized upper-linearizable function optimization, for any $0\le \theta \le 1$. This approach allows for the first results for monotone up-concave optimization with general convex constraints and non-monotone up-concave optimization with general convex constraints. Further, the above results for first order feedback are extended to zeroth order, semi-bandit, and bandit feedback.

相關內容

Class-incremental Learning (CIL) enables the model to incrementally absorb knowledge from new classes and build a generic classifier across all previously encountered classes. When the model optimizes with new classes, the knowledge of previous classes is inevitably erased, leading to catastrophic forgetting. Addressing this challenge requires making a trade-off between retaining old knowledge and accommodating new information. However, this balancing process often requires sacrificing some information, which can lead to a partial loss in the model's ability to discriminate between classes. To tackle this issue, we design the adaptive weighted parameter fusion with Contrastive Language-Image Pre-training (CLIP), which not only takes into account the variability of the data distribution of different tasks, but also retains all the effective information of the parameter matrix to the greatest extent. In addition, we introduce a balance factor that can balance the data distribution alignment and distinguishability of adjacent tasks. Experimental results on several traditional benchmarks validate the superiority of the proposed method.

In analog neuromorphic chips, designers can embed computing primitives in the intrinsic physical properties of devices and circuits, heavily reducing device count and energy consumption, and enabling high parallelism, because all devices are computing simultaneously. Neural network parameters can be stored in local analog non-volatile memories (NVMs), saving the energy required to move data between memory and logic. However, the main drawback of analog sub-threshold electronic circuits is their dramatic temperature sensitivity. In this paper, we demonstrate that a temperature compensation mechanism can be devised to solve this problem. We have designed and fabricated a chip implementing a two-layer analog neural network trained to classify low-resolution images of handwritten digits with a low-cost single-poly complementary metal-oxide-semiconductor (CMOS) process, using unconventional analog NVMs for weight storage. We demonstrate a temperature-resilient analog neuromorphic chip for image recognition operating between 10$^{\circ}$C and 60$^{\circ}$C without loss of classification accuracy, within 2\% of the corresponding software-based neural network in the whole temperature range.

This work presents a framework for modeling three-dimensional scaffold-mediated bone regeneration and the associated optimization problem. By incorporating microstructure into the model through periodic homogenization, we capture the effects of microscale fluctuations on the bone growth process. Numerical results and optimized scaffold designs that explicitly account for the microstructure are presented, demonstrating the potential of this approach for improving scaffold performance.

We propose a noise-robust learning framework for the Koopman operator of nonlinear dynamical systems, with guaranteed long-term stability and improved model performance for better model-based predictive control tasks. Unlike some existing approaches that rely on ad hoc observables or black-box neural networks in extended dynamic mode decomposition (EDMD), our framework leverages observables generated by the system dynamics, when the system dynamics is known, through a Hankel matrix, which shares similarities with discrete Polyflow. When system dynamics is unknown, we approximate them with a neural network while maintaining structural similarities to discrete Polyflow. To enhance noise robustness and ensure long-term stability, we developed a stable parameterization of the Koopman operator, along with a progressive learning strategy for rollout loss. To further improve the performance of the model in the phase space, a simple iterative data augmentation strategy was developed. Numerical experiments of prediction and control of classic nonlinear systems with ablation study showed the effectiveness of the proposed techniques over several state-of-the-art practices.

Semantic encoders and decoders for digital semantic communication (SC) often struggle to adapt to variations in unpredictable channel environments and diverse system designs. To address these challenges, this paper proposes a novel framework for training semantic encoders and decoders to enable channel-adaptive digital SC. The core idea is to use binary symmetric channel (BSC) as a universal representation of generic digital communications, eliminating the need to specify channel environments or system designs. Based on this idea, our framework employs parallel BSCs to equivalently model the relationship between the encoder's output and the decoder's input. The bit-flip probabilities of these BSCs are treated as trainable parameters during end-to-end training, with varying levels of regularization applied to address diverse requirements in practical systems. The advantage of our framework is justified by developing a training-aware communication strategy for the inference stage. This strategy makes communication bit errors align with the pre-trained bit-flip probabilities by adaptively selecting power and modulation levels based on practical requirements and channel conditions. Simulation results demonstrate that the proposed framework outperforms existing training approaches in terms of both task performance and power consumption.

Effective long-term memory management is crucial for language models handling extended contexts. We introduce a novel framework that dynamically ranks memory entries based on relevance. Unlike previous works, our model introduces a novel relevance scoring and a pointwise re-ranking model for key-value embeddings, inspired by learning-to-rank techniques in information retrieval. Enhanced Ranked Memory Augmented Retrieval ERMAR achieves state-of-the-art results on standard benchmarks.

Research into the development of special-purpose computing architectures designed to solve quadratic unconstrained binary optimization (QUBO) problems has flourished in recent years. It has been demonstrated in the literature that such special-purpose solvers can outperform traditional CMOS architectures by orders of magnitude with respect to timing metrics on synthetic problems. However, they face challenges with constrained problems such as the quadratic assignment problem (QAP), where mapping to binary formulations such as QUBO introduces overhead and limits parallelism. In-memory computing (IMC) devices, such as memristor-based analog Ising machines, offer significant speedups and efficiency gains over traditional CPU-based solvers, particularly for solving combinatorial optimization problems. In this work, we present a novel local search heuristic designed for IMC hardware to tackle the QAP. Our approach enables massive parallelism that allows for computing of full neighbourhoods simultaneously to make update decisions. We ensure binary solutions remain feasible by selecting local moves that lead to neighbouring feasible solutions, leveraging feasible-space search heuristics and the underlying structure of a given problem. Our approach is compatible with both digital computers and analog hardware. We demonstrate its effectiveness in CPU implementations by comparing it with state-of-the-art heuristics for solving the QAP.

We present a novel approach to selective model quantization that transcends the limitations of architecture-specific and size-dependent compression methods for Large Language Models (LLMs) using Entropy-Weighted Quantization (EWQ). By analyzing the entropy distribution across transformer blocks, EWQ determines which blocks can be safely quantized without causing significant performance degradation, independent of model architecture or size. Our method outperforms uniform quantization approaches, maintaining Massive Multitask Language Understanding (MMLU) accuracy scores within 0.5% of unquantized models while reducing memory usage by up to 18%. We demonstrate the effectiveness of EWQ across multiple architectures -- from 1.6B to 70B parameters -- and showcase consistent improvements in the quality-compression trade-off regardless of model scale or architectural design. A surprising finding of EWQ is its ability to reduce perplexity compared to unquantized models, suggesting the presence of beneficial regularization through selective precision reduction. This improvement holds across different model families, indicating a fundamental relationship between layer-level entropy and optimal precision requirements. Additionally, we introduce FastEWQ, a rapid method for entropy distribution analysis that eliminates the need for loading model weights. This technique leverages universal characteristics of entropy distribution that persist across various architectures and scales, enabling near-instantaneous quantization decisions while maintaining 80% classification accuracy with full entropy analysis. Our results demonstrate that effective quantization strategies can be developed independently of specific architectural choices or model sizes, opening new possibilities for efficient LLM deployment.

Dual encoder architectures like CLIP models map two types of inputs into a shared embedding space and predict similarities between them. Despite their success, it is, however, not understood how these models compare their two inputs. Common first-order feature-attribution methods can only provide limited insights into dual-encoders since their predictions depend on feature-interactions rather than on individual features. In this paper, we first derive a second-order method enabling the attribution of predictions by any differentiable dual encoder onto feature-interactions between its inputs. Second, we apply our method to CLIP models and show that they learn fine-grained correspondences between parts of captions and regions in images. They match objects across input modes also account for mismatches. This visual-linguistic grounding ability, however, varies heavily between object classes and exhibits pronounced out-of-domain effects. We can identify individual errors as well as systematic failure categories including object coverage, unusual scenes and correlated contexts.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司