Introducing a coupling framework reminiscent of FETI methods, but here on abstract form, we establish conditions for stability and minimal requirements for well-posedness on the continuous level, as well as conditions on local solvers for the approximation of subproblems. We then discuss stability of the resulting Lagrange multiplier methods and show stability under a mesh conditions between the local discretizations and the mortar space. If this condition is not satisfied we show how a stabilization, acting only on the multiplier can be used to achieve stability. The design of preconditioners of the Schur complement system is discussed in the unstabilized case. Finally we discuss some applications that enter the framework.
The development of cubical type theory inspired the idea of "extension types" which has been found to have applications in other type theories that are unrelated to homotopy type theory or cubical type theory. This article describes these applications, including on records, metaprogramming, controlling unfolding, and some more exotic ones.
We consider nonparametric Bayesian inference in a multidimensional diffusion model with reflecting boundary conditions based on discrete high-frequency observations. We prove a general posterior contraction rate theorem in $L^2$-loss, which is applied to Gaussian priors. The resulting posteriors, as well as their posterior means, are shown to converge to the ground truth at the minimax optimal rate over H\"older smoothness classes in any dimension. Of independent interest and as part of our proofs, we show that certain frequentist penalized least squares estimators are also minimax optimal.
Researchers would often like to leverage data from a collection of sources (e.g., primary studies in a meta-analysis) to estimate causal effects in a target population of interest. However, traditional meta-analytic methods do not produce causally interpretable estimates for a well-defined target population. In this paper, we present the CausalMetaR R package, which implements efficient and robust methods to estimate causal effects in a given internal or external target population using multi-source data. The package includes estimators of average and subgroup treatment effects for the entire target population. To produce efficient and robust estimates of causal effects, the package implements doubly robust and non-parametric efficient estimators and supports using flexible data-adaptive (e.g., machine learning techniques) methods and cross-fitting techniques to estimate the nuisance models (e.g., the treatment model, the outcome model). We describe the key features of the package and demonstrate how to use the package through an example.
Gaussian processes are a widely embraced technique for regression and classification due to their good prediction accuracy, analytical tractability and built-in capabilities for uncertainty quantification. However, they suffer from the curse of dimensionality whenever the number of variables increases. This challenge is generally addressed by assuming additional structure in theproblem, the preferred options being either additivity or low intrinsic dimensionality. Our contribution for high-dimensional Gaussian process modeling is to combine them with a multi-fidelity strategy, showcasing the advantages through experiments on synthetic functions and datasets.
We introduce SymbolicAI, a versatile and modular framework employing a logic-based approach to concept learning and flow management in generative processes. SymbolicAI enables the seamless integration of generative models with a diverse range of solvers by treating large language models (LLMs) as semantic parsers that execute tasks based on both natural and formal language instructions, thus bridging the gap between symbolic reasoning and generative AI. We leverage probabilistic programming principles to tackle complex tasks, and utilize differentiable and classical programming paradigms with their respective strengths. The framework introduces a set of polymorphic, compositional, and self-referential operations for data stream manipulation, aligning LLM outputs with user objectives. As a result, we can transition between the capabilities of various foundation models endowed with zero- and few-shot learning capabilities and specialized, fine-tuned models or solvers proficient in addressing specific problems. In turn, the framework facilitates the creation and evaluation of explainable computational graphs. We conclude by introducing a quality measure and its empirical score for evaluating these computational graphs, and propose a benchmark that compares various state-of-the-art LLMs across a set of complex workflows. We refer to the empirical score as the "Vector Embedding for Relational Trajectory Evaluation through Cross-similarity", or VERTEX score for short. The framework codebase and benchmark are linked below.
Finding suitable preconditioners to accelerate iterative solution methods, such as the conjugate gradient method, is an active area of research. In this paper, we develop a computationally efficient data-driven approach to replace the typically hand-engineered algorithms with neural networks. Optimizing the condition number of the linear system directly is computationally infeasible. Instead, our method generates an incomplete factorization of the matrix and is, therefore, referred to as neural incomplete factorization (NeuralIF). For efficient training, we utilize a stochastic approximation of the Frobenius loss which only requires matrix-vector multiplications. At the core of our method is a novel messagepassing block, inspired by sparse matrix theory, that aligns with the objective of finding a sparse factorization of the matrix. By replacing conventional preconditioners used within the conjugate gradient method by data-driven models based on graph neural networks, we accelerate the iterative solving procedure. We evaluate our proposed method on both a synthetic and a real-world problem arising from scientific computing and show its ability to reduce the solving time while remaining computationally efficient.
We present a label-free method for detecting anomalies during thermographic inspection of building envelopes. It is based on the AI-driven prediction of thermal distributions from color images. Effectively the method performs as a one-class classifier of the thermal image regions with high mismatch between the predicted and actual thermal distributions. The algorithm can learn to identify certain features as normal or anomalous by selecting the target sample used for training. We demonstrated this principle by training the algorithm with data collected at different outdoors temperature, which lead to the detection of thermal bridges. The method can be implemented to assist human professionals during routine building inspections or combined with mobile platforms for automating examination of large areas.
For a sequence of random structures with $n$-element domains over a relational signature, we define its first order (FO) complexity as a certain subset in the Banach space $\ell^{\infty}/c_0$. The well-known FO zero-one law and FO convergence law correspond to FO complexities equal to $\{0,1\}$ and a subset of $\mathbb{R}$, respectively. We present a hierarchy of FO complexity classes, introduce a stochastic FO reduction that allows to transfer complexity results between different random structures, and deduce using this tool several new logical limit laws for binomial random structures. Finally, we introduce a conditional distribution on graphs, subject to a FO sentence $\varphi$, that generalises certain well-known random graph models, show instances of this distribution for every complexity class, and prove that the set of all $\varphi$ validating 0--1 law is not recursively enumerable.
The matched case-control design, up until recently mostly pertinent to epidemiological studies, is becoming customary in biomedical applications as well. For instance, in omics studies, it is quite common to compare cancer and healthy tissue from the same patient. Furthermore, researchers today routinely collect data from various and variable sources that they wish to relate to the case-control status. This highlights the need to develop and implement statistical methods that can take these tendencies into account. We present an R package penalizedclr, that provides an implementation of the penalized conditional logistic regression model for analyzing matched case-control studies. It allows for different penalties for different blocks of covariates, and it is therefore particularly useful in the presence of multi-source omics data. Both L1 and L2 penalties are implemented. Additionally, the package implements stability selection for variable selection in the considered regression model. The proposed method fills a gap in the available software for fitting high-dimensional conditional logistic regression model accounting for the matched design and block structure of predictors/features. The output consists of a set of selected variables that are significantly associated with case-control status. These features can then be investigated in terms of functional interpretation or validation in further, more targeted studies.
Machine-learning models have demonstrated great success in learning complex patterns that enable them to make predictions about unobserved data. In addition to using models for prediction, the ability to interpret what a model has learned is receiving an increasing amount of attention. However, this increased focus has led to considerable confusion about the notion of interpretability. In particular, it is unclear how the wide array of proposed interpretation methods are related, and what common concepts can be used to evaluate them. We aim to address these concerns by defining interpretability in the context of machine learning and introducing the Predictive, Descriptive, Relevant (PDR) framework for discussing interpretations. The PDR framework provides three overarching desiderata for evaluation: predictive accuracy, descriptive accuracy and relevancy, with relevancy judged relative to a human audience. Moreover, to help manage the deluge of interpretation methods, we introduce a categorization of existing techniques into model-based and post-hoc categories, with sub-groups including sparsity, modularity and simulatability. To demonstrate how practitioners can use the PDR framework to evaluate and understand interpretations, we provide numerous real-world examples. These examples highlight the often under-appreciated role played by human audiences in discussions of interpretability. Finally, based on our framework, we discuss limitations of existing methods and directions for future work. We hope that this work will provide a common vocabulary that will make it easier for both practitioners and researchers to discuss and choose from the full range of interpretation methods.