Stochastic gradient descent (SGD) is a promising method for solving large-scale inverse problems, due to its excellent scalability with respect to data size. In this work, we analyze a new data-driven regularized stochastic gradient descent for the efficient numerical solution of a class of nonlinear ill-posed inverse problems in infinite dimensional Hilbert spaces. At each step of the iteration, the method randomly selects one equation from the nonlinear system combined with a corresponding equation from the learned system based on training data to obtain a stochastic estimate of the gradient and then performs a descent step with the estimated gradient. We prove the regularizing property of this method under the tangential cone condition and a priori parameter choice and then derive the convergence rates under the additional source condition and range invariance conditions. Several numerical experiments are provided to complement the analysis.
Acyclic join queries can be evaluated instance-optimally using Yannakakis' algorithm, which avoids needlessly large intermediate results through semi-join passes. Recent work proposes to address the significant hidden constant factors arising from a naive implementation of Yannakakis by decomposing the hash join operator into two suboperators, called Lookup and Expand. In this paper, we present a novel method for integrating Lookup and Expand plans in interpreted environments, like column stores, formalizing them using Nested Semijoin Algebra (NSA) and implementing them through a shredding approach. We characterize the class of NSA expressions that can be evaluated instance-optimally as those that are 2-phase: no `shrinking' operator is applied after an unnest (i.e., expand). We introduce Shredded Yannakakis (SYA), an evaluation algorithm for acyclic joins that, starting from a binary join plan, transforms it into a 2-phase NSA plan, and then evaluates it through the shredding technique. We show that SYA is provably robust (i.e., never produces large intermediate results) and without regret (i.e., is never worse than the binary join plan under a suitable cost model) on the class of well-behaved binary join plans. Our experiments on a suite of 1,849 queries show that SYA improves performance for 88.7% of the queries with speedups up to 188x, while remaining competitive on the other queries. We hope this approach offers a fresh perspective on Yannakakis' algorithm, helping system engineers better understand its practical benefits and facilitating its adoption into a broader spectrum of query engines.
In-Context Learning (ICL) is a phenomenon where task learning occurs through a prompt sequence without the necessity of parameter updates. ICL in Multi-Headed Attention (MHA) with absolute positional embedding has been the focus of more study than other sequence model varieties. We examine implications of architectural differences between GPT-2 and LLaMa as well as LlaMa and Mamba. We extend work done by Garg et al. (2022) and Park et al. (2024) to GPT-2/LLaMa hybrid and LLaMa/Mamba hybrid models - examining the interplay between sequence transformation blocks and regressive performance in-context. We note that certain architectural changes cause degraded training efficiency/ICL accuracy by converging to suboptimal predictors or converging slower. We also find certain hybrids showing optimistic performance improvements, informing potential future ICL-focused architecture modifications. Additionally, we propose the "ICL regression score", a scalar metric describing a model's whole performance on a specific task. Compute limitations impose restrictions on our architecture-space, training duration, number of training runs, function class complexity, and benchmark complexity. To foster reproducible and extensible research, we provide a typed, modular, and extensible Python package on which we run all experiments.
Contraction theory is an analytical tool to study differential dynamics of a non-autonomous (i.e., time-varying) nonlinear system under a contraction metric defined with a uniformly positive definite matrix, the existence of which results in a necessary and sufficient characterization of incremental exponential stability of multiple solution trajectories with respect to each other. By using a squared differential length as a Lyapunov-like function, its nonlinear stability analysis boils down to finding a suitable contraction metric that satisfies a stability condition expressed as a linear matrix inequality, indicating that many parallels can be drawn between well-known linear systems theory and contraction theory for nonlinear systems. Furthermore, contraction theory takes advantage of a superior robustness property of exponential stability used in conjunction with the comparison lemma. This yields much-needed safety and stability guarantees for neural network-based control and estimation schemes, without resorting to a more involved method of using uniform asymptotic stability for input-to-state stability. Such distinctive features permit systematic construction of a contraction metric via convex optimization, thereby obtaining an explicit exponential bound on the distance between a time-varying target trajectory and solution trajectories perturbed externally due to disturbances and learning errors. The objective of this paper is therefore to present a tutorial overview of contraction theory and its advantages in nonlinear stability analysis of deterministic and stochastic systems, with an emphasis on deriving formal robustness and stability guarantees for various learning-based and data-driven automatic control methods. In particular, we provide a detailed review of techniques for finding contraction metrics and associated control and estimation laws using deep neural networks.
When there are multiple outcome series of interest, Synthetic Control analyses typically proceed by estimating separate weights for each outcome. In this paper, we instead propose estimating a common set of weights across outcomes, by balancing either a vector of all outcomes or an index or average of them. Under a low-rank factor model, we show that these approaches lead to lower bias bounds than separate weights, and that averaging leads to further gains when the number of outcomes grows. We illustrate this via a re-analysis of the impact of the Flint water crisis on educational outcomes.
We study gradient descent (GD) dynamics on logistic regression problems with large, constant step sizes. For linearly-separable data, it is known that GD converges to the minimizer with arbitrarily large step sizes, a property which no longer holds when the problem is not separable. In fact, the behaviour can be much more complex -- a sequence of period-doubling bifurcations begins at the critical step size $2/\lambda$, where $\lambda$ is the largest eigenvalue of the Hessian at the solution. Using a smaller-than-critical step size guarantees convergence if initialized nearby the solution: but does this suffice globally? In one dimension, we show that a step size less than $1/\lambda$ suffices for global convergence. However, for all step sizes between $1/\lambda$ and the critical step size $2/\lambda$, one can construct a dataset such that GD converges to a stable cycle. In higher dimensions, this is actually possible even for step sizes less than $1/\lambda$. Our results show that although local convergence is guaranteed for all step sizes less than the critical step size, global convergence is not, and GD may instead converge to a cycle depending on the initialization.
We propose a low-complexity sign-dependent metric for sequence selection and study the nonlinear shaping gain achievable for a given computational cost, establishing a benchmark for future research. Small gains are obtained with feasible complexity. Higher gains are achievable in principle, but with high complexity or a more sophisticated metric.
We describe a mesh-free three-dimensional (3D) numerical scheme for solving the incompressible semi-geostrophic equations, based on semi-discrete optimal transport techniques. These results generalise previous two-dimensional (2D) implementations. The optimal transport methods we adopt are known for their structural preservation and energy conservation qualities and achieve an excellent level of efficiency and numerical energy-conservation. We use this scheme to generate numerical simulations of an important benchmark problem. To our knowledge, this is the first fully 3D simulation of this particular cyclone, evidencing the model's applicability to atmospheric and oceanic phenomena and offering a novel, robust tool for meteorological and oceanographic modelling.
Structured state-space models (SSMs) such as S4, stemming from the seminal work of Gu et al., are gaining popularity as effective approaches for modeling sequential data. Deep SSMs demonstrate outstanding performance across a diverse set of domains, at a reduced training and inference cost compared to attention-based transformers. Recent developments show that if the linear recurrence powering SSMs allows for multiplicative interactions between inputs and hidden states (e.g. GateLoop, Mamba, GLA), then the resulting architecture can surpass in both in accuracy and efficiency attention-powered foundation models trained on text, at scales of billion parameters. In this paper, we give theoretical grounding to this recent finding using tools from Rough Path Theory: we show that when random linear recurrences are equipped with simple input-controlled transitions (selectivity mechanism), then the hidden state is provably a low-dimensional projection of a powerful mathematical object called the signature of the input -- capturing non-linear interactions between tokens at distinct timescales. Our theory not only motivates the success of modern selective state-space models such as Mamba but also provides a solid framework to understand the expressive power of future SSM variants.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.