亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Graph generation poses a significant challenge as it involves predicting a complete graph with multiple nodes and edges based on simply a given label. This task also carries fundamental importance to numerous real-world applications, including de-novo drug and molecular design. In recent years, several successful methods have emerged in the field of graph generation. However, these approaches suffer from two significant shortcomings: (1) the underlying Graph Neural Network (GNN) architectures used in these methods are often underexplored; and (2) these methods are often evaluated on only a limited number of metrics. To fill this gap, we investigate the expressiveness of GNNs under the context of the molecular graph generation task, by replacing the underlying GNNs of graph generative models with more expressive GNNs. Specifically, we analyse the performance of six GNNs on six different molecular generative objectives on the ZINC-250k dataset in two different generative frameworks: autoregressive generation models, such as GCPN and GraphAF, and one-shot generation models, such as GraphEBM. Through our extensive experiments, we demonstrate that advanced GNNs can indeed improve the performance of GCPN, GraphAF, and GraphEBM on molecular generation tasks, but GNN expressiveness is not a necessary condition for a good GNN-based generative model. Moreover, we show that GCPN and GraphAF with advanced GNNs can achieve state-of-the-art results across 17 other non-GNN-based graph generative approaches, such as variational autoencoders and Bayesian optimisation models, on the proposed molecular generative objectives (DRD2, Median1, Median2), which are important metrics for de-novo molecular design.

相關內容

AI-driven chatbots such as ChatGPT have caused a tremendous hype lately. For BPM applications, several applications for AI-driven chatbots have been identified to be promising to generate business value, including explanation of process mining outcomes and preparation of input data. However, a systematic analysis of chatbots for their support of conversational process modeling as a process-oriented capability is missing. This work aims at closing this gap by providing a systematic analysis of existing chatbots. Application scenarios are identified along the process life cycle. Then a systematic literature review on conversational process modeling is performed, resulting in a taxonomy of application scenarios for conversational process modeling, including paraphrasing and improvement of process descriptions. In addition, this work suggests and applies an evaluation method for the output of AI-driven chatbots with respect to completeness and correctness of the process models. This method consists of a set of KPIs on a test set, a set of prompts for task and control flow extraction, as well as a survey with users. Based on the literature and the evaluation, recommendations for the usage (practical implications) and further development (research directions) of conversational process modeling are derived.

The Segment Anything Model (SAM) is the first foundation model for general image segmentation. It has achieved impressive results on various natural image segmentation tasks. However, medical image segmentation (MIS) is more challenging because of the complex modalities, fine anatomical structures, uncertain and complex object boundaries, and wide-range object scales. To fully validate SAM's performance on medical data, we collected and sorted 53 open-source datasets and built a large medical segmentation dataset with 18 modalities, 84 objects, 125 object-modality paired targets, 1050K 2D images, and 6033K masks. We comprehensively analyzed different models and strategies on the so-called COSMOS 1050K dataset. Our findings mainly include the following: 1) SAM showed remarkable performance in some specific objects but was unstable, imperfect, or even totally failed in other situations. 2) SAM with the large ViT-H showed better overall performance than that with the small ViT-B. 3) SAM performed better with manual hints, especially box, than the Everything mode. 4) SAM could help human annotation with high labeling quality and less time. 5) SAM was sensitive to the randomness in the center point and tight box prompts, and may suffer from a serious performance drop. 6) SAM performed better than interactive methods with one or a few points, but will be outpaced as the number of points increases. 7) SAM's performance correlated to different factors, including boundary complexity, intensity differences, etc. 8) Finetuning the SAM on specific medical tasks could improve its average DICE performance by 4.39% and 6.68% for ViT-B and ViT-H, respectively. We hope that this comprehensive report can help researchers explore the potential of SAM applications in MIS, and guide how to appropriately use and develop SAM.

The end-to-end ASR model is often desired in the streaming multilingual scenario since it is easier to deploy and can benefit from pre-trained speech models such as powerful foundation models. Meanwhile, the heterogeneous nature and imbalanced data abundance of different languages may cause performance degradation, leading to asynchronous peak performance for different languages during training, especially on tail ones. Sometimes even the data itself may become unavailable as a result of the enhanced privacy protection. Existing work tend to significantly increase the model size or learn language-specific decoders to accommodate each language separately. In this study, we explore simple yet effective Language-Dependent Adapter (LDA) finetuning under a cascaded Conformer transducer framework enhanced by teacher pseudo-labeling for tail languages in the streaming multilingual ASR. The adapter only accounts for 0.4% of the full model per language. It is plugged into the frozen foundation model and is the only trainable module during the finetuning process with noisy student training. The final model merges the adapter parameters from different checkpoints for different languages. The model performance is validated on a challenging multilingual dictation dataset, which includes 39 tail languages across Latin, Greek, Arabic, etc. Our proposed method brings 12.2% word error rate reduction on average and up to 37.5% on a single locale. Furthermore, we show that our parameter-efficient LDA can match the quality of the full model finetuning, thus greatly alleviating the asynchronous peak performance issue.

Neural network (NN) denoisers are an essential building block in many common tasks, ranging from image reconstruction to image generation. However, the success of these models is not well understood from a theoretical perspective. In this paper, we aim to characterize the functions realized by shallow ReLU NN denoisers -- in the common theoretical setting of interpolation (i.e., zero training loss) with a minimal representation cost (i.e., minimal $\ell^2$ norm weights). First, for univariate data, we derive a closed form for the NN denoiser function, find it is contractive toward the clean data points, and prove it generalizes better than the empirical MMSE estimator at a low noise level. Next, for multivariate data, we find the NN denoiser functions in a closed form under various geometric assumptions on the training data: data contained in a low-dimensional subspace, data contained in a union of one-sided rays, or several types of simplexes. These functions decompose into a sum of simple rank-one piecewise linear interpolations aligned with edges and/or faces connecting training samples. We empirically verify this alignment phenomenon on synthetic data and real images.

While including pairwise interactions in a regression model can better approximate response surface, fitting such an interaction model is a well-known difficult problem. In particular, analyzing contemporary high-dimensional datasets often leads to extremely large-scale interaction modeling problem, where the challenge is posed to identify important interactions among millions or even billions of candidate interactions. While several methods have recently been proposed to tackle this challenge, they are mostly designed by (1) assuming the hierarchy assumption among the important interactions and (or) (2) focusing on the case in linear models with interactions and (sub)Gaussian errors. In practice, however, neither of these two building blocks has to hold. In this paper, we propose an interaction modeling framework in generalized linear models (GLMs) which is free of any assumptions on hierarchy. We develop a non-trivial extension of the reluctance interaction selection principle to the GLMs setting, where a main effect is preferred over an interaction if all else is equal. Our proposed method is easy to implement, and is highly scalable to large-scale datasets. Theoretically, we demonstrate that it possesses screening consistency under high-dimensional setting. Numerical studies on simulated datasets and a real dataset show that the proposed method does not sacrifice statistical performance in the presence of significant computational gain.

The emergence of pretrained models has significantly impacted Natural Language Processing (NLP) and Computer Vision to relational datasets. Traditionally, these models are assessed through fine-tuned downstream tasks. However, this raises the question of how to evaluate these models more efficiently and more effectively. In this study, we explore a novel approach where we leverage the meta features associated with each entity as a source of worldly knowledge and employ entity representations from the models. We propose using the consistency between these representations and the meta features as a metric for evaluating pretrained models. Our method's effectiveness is demonstrated across various domains, including models with relational datasets, large language models and image models.

Recent advances in deep learning techniques have achieved remarkable performance in several computer vision problems. A notably intuitive technique called Curriculum Learning (CL) has been introduced recently for training deep learning models. Surprisingly, curriculum learning achieves significantly improved results in some tasks but marginal or no improvement in others. Hence, there is still a debate about its adoption as a standard method to train supervised learning models. In this work, we investigate the impact of curriculum learning in crowd counting using the density estimation method. We performed detailed investigations by conducting 112 experiments using six different CL settings using eight different crowd models. Our experiments show that curriculum learning improves the model learning performance and shortens the convergence time.

Compared with cheap addition operation, multiplication operation is of much higher computation complexity. The widely-used convolutions in deep neural networks are exactly cross-correlation to measure the similarity between input feature and convolution filters, which involves massive multiplications between float values. In this paper, we present adder networks (AdderNets) to trade these massive multiplications in deep neural networks, especially convolutional neural networks (CNNs), for much cheaper additions to reduce computation costs. In AdderNets, we take the $\ell_1$-norm distance between filters and input feature as the output response. The influence of this new similarity measure on the optimization of neural network have been thoroughly analyzed. To achieve a better performance, we develop a special back-propagation approach for AdderNets by investigating the full-precision gradient. We then propose an adaptive learning rate strategy to enhance the training procedure of AdderNets according to the magnitude of each neuron's gradient. As a result, the proposed AdderNets can achieve 74.9% Top-1 accuracy 91.7% Top-5 accuracy using ResNet-50 on the ImageNet dataset without any multiplication in convolution layer.

Language model pre-training has proven to be useful in learning universal language representations. As a state-of-the-art language model pre-training model, BERT (Bidirectional Encoder Representations from Transformers) has achieved amazing results in many language understanding tasks. In this paper, we conduct exhaustive experiments to investigate different fine-tuning methods of BERT on text classification task and provide a general solution for BERT fine-tuning. Finally, the proposed solution obtains new state-of-the-art results on eight widely-studied text classification datasets.

Automatically creating the description of an image using any natural languages sentence like English is a very challenging task. It requires expertise of both image processing as well as natural language processing. This paper discuss about different available models for image captioning task. We have also discussed about how the advancement in the task of object recognition and machine translation has greatly improved the performance of image captioning model in recent years. In addition to that we have discussed how this model can be implemented. In the end, we have also evaluated the performance of model using standard evaluation matrices.

北京阿比特科技有限公司