亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

3D human body reconstruction from monocular images is an interesting and ill-posed problem in computer vision with wider applications in multiple domains. In this paper, we propose SHARP, a novel end-to-end trainable network that accurately recovers the detailed geometry and appearance of 3D people in loose clothing from a monocular image. We propose a sparse and efficient fusion of a parametric body prior with a non-parametric peeled depth map representation of clothed models. The parametric body prior constraints our model in two ways: first, the network retains geometrically consistent body parts that are not occluded by clothing, and second, it provides a body shape context that improves prediction of the peeled depth maps. This enables SHARP to recover fine-grained 3D geometrical details with just L1 losses on the 2D maps, given an input image. We evaluate SHARP on publicly available Cloth3D and THuman datasets and report superior performance to state-of-the-art approaches.

相關內容

3D是(shi)(shi)英文“Three Dimensions”的(de)簡(jian)稱(cheng),中文是(shi)(shi)指(zhi)三維、三個維度、三個坐(zuo)標(biao),即有長(chang)、有寬、有高,換(huan)句話說,就是(shi)(shi)立體的(de),是(shi)(shi)相(xiang)對于只有長(chang)和(he)寬的(de)平面(2D)而言。

A video autoencoder is proposed for learning disentan- gled representations of 3D structure and camera pose from videos in a self-supervised manner. Relying on temporal continuity in videos, our work assumes that the 3D scene structure in nearby video frames remains static. Given a sequence of video frames as input, the video autoencoder extracts a disentangled representation of the scene includ- ing: (i) a temporally-consistent deep voxel feature to represent the 3D structure and (ii) a 3D trajectory of camera pose for each frame. These two representations will then be re-entangled for rendering the input video frames. This video autoencoder can be trained directly using a pixel reconstruction loss, without any ground truth 3D or camera pose annotations. The disentangled representation can be applied to a range of tasks, including novel view synthesis, camera pose estimation, and video generation by motion following. We evaluate our method on several large- scale natural video datasets, and show generalization results on out-of-domain images.

Face recognition is one of the most studied research topics in the community. In recent years, the research on face recognition has shifted to using 3D facial surfaces, as more discriminating features can be represented by the 3D geometric information. This survey focuses on reviewing the 3D face recognition techniques developed in the past ten years which are generally categorized into conventional methods and deep learning methods. The categorized techniques are evaluated using detailed descriptions of the representative works. The advantages and disadvantages of the techniques are summarized in terms of accuracy, complexity and robustness to face variation (expression, pose and occlusions, etc). The main contribution of this survey is that it comprehensively covers both conventional methods and deep learning methods on 3D face recognition. In addition, a review of available 3D face databases is provided, along with the discussion of future research challenges and directions.

Finding local features that are repeatable across multiple views is a cornerstone of sparse 3D reconstruction. The classical image matching paradigm detects keypoints per-image once and for all, which can yield poorly-localized features and propagate large errors to the final geometry. In this paper, we refine two key steps of structure-from-motion by a direct alignment of low-level image information from multiple views: we first adjust the initial keypoint locations prior to any geometric estimation, and subsequently refine points and camera poses as a post-processing. This refinement is robust to large detection noise and appearance changes, as it optimizes a featuremetric error based on dense features predicted by a neural network. This significantly improves the accuracy of camera poses and scene geometry for a wide range of keypoint detectors, challenging viewing conditions, and off-the-shelf deep features. Our system easily scales to large image collections, enabling pixel-perfect crowd-sourced localization at scale. Our code is publicly available at //github.com/cvg/pixel-perfect-sfm as an add-on to the popular SfM software COLMAP.

Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.

In this paper, we proposed a new deep learning based dense monocular SLAM method. Compared to existing methods, the proposed framework constructs a dense 3D model via a sparse to dense mapping using learned surface normals. With single view learned depth estimation as prior for monocular visual odometry, we obtain both accurate positioning and high quality depth reconstruction. The depth and normal are predicted by a single network trained in a tightly coupled manner.Experimental results show that our method significantly improves the performance of visual tracking and depth prediction in comparison to the state-of-the-art in deep monocular dense SLAM.

With the advent of deep neural networks, learning-based approaches for 3D reconstruction have gained popularity. However, unlike for images, in 3D there is no canonical representation which is both computationally and memory efficient yet allows for representing high-resolution geometry of arbitrary topology. Many of the state-of-the-art learning-based 3D reconstruction approaches can hence only represent very coarse 3D geometry or are limited to a restricted domain. In this paper, we propose occupancy networks, a new representation for learning-based 3D reconstruction methods. Occupancy networks implicitly represent the 3D surface as the continuous decision boundary of a deep neural network classifier. In contrast to existing approaches, our representation encodes a description of the 3D output at infinite resolution without excessive memory footprint. We validate that our representation can efficiently encode 3D structure and can be inferred from various kinds of input. Our experiments demonstrate competitive results, both qualitatively and quantitatively, for the challenging tasks of 3D reconstruction from single images, noisy point clouds and coarse discrete voxel grids. We believe that occupancy networks will become a useful tool in a wide variety of learning-based 3D tasks.

We present the first method to capture the 3D total motion of a target person from a monocular view input. Given an image or a monocular video, our method reconstructs the motion from body, face, and fingers represented by a 3D deformable mesh model. We use an efficient representation called 3D Part Orientation Fields (POFs), to encode the 3D orientations of all body parts in the common 2D image space. POFs are predicted by a Fully Convolutional Network (FCN), along with the joint confidence maps. To train our network, we collect a new 3D human motion dataset capturing diverse total body motion of 40 subjects in a multiview system. We leverage a 3D deformable human model to reconstruct total body pose from the CNN outputs by exploiting the pose and shape prior in the model. We also present a texture-based tracking method to obtain temporally coherent motion capture output. We perform thorough quantitative evaluations including comparison with the existing body-specific and hand-specific methods, and performance analysis on camera viewpoint and human pose changes. Finally, we demonstrate the results of our total body motion capture on various challenging in-the-wild videos. Our code and newly collected human motion dataset will be publicly shared.

We present a unified framework tackling two problems: class-specific 3D reconstruction from a single image, and generation of new 3D shape samples. These tasks have received considerable attention recently; however, existing approaches rely on 3D supervision, annotation of 2D images with keypoints or poses, and/or training with multiple views of each object instance. Our framework is very general: it can be trained in similar settings to these existing approaches, while also supporting weaker supervision scenarios. Importantly, it can be trained purely from 2D images, without ground-truth pose annotations, and with a single view per instance. We employ meshes as an output representation, instead of voxels used in most prior work. This allows us to exploit shading information during training, which previous 2D-supervised methods cannot. Thus, our method can learn to generate and reconstruct concave object classes. We evaluate our approach on synthetic data in various settings, showing that (i) it learns to disentangle shape from pose; (ii) using shading in the loss improves performance; (iii) our model is comparable or superior to state-of-the-art voxel-based approaches on quantitative metrics, while producing results that are visually more pleasing; (iv) it still performs well when given supervision weaker than in prior works.

Partial person re-identification (re-id) is a challenging problem, where only several partial observations (images) of people are available for matching. However, few studies have provided flexible solutions to identifying a person in an image containing arbitrary part of the body. In this paper, we propose a fast and accurate matching method to address this problem. The proposed method leverages Fully Convolutional Network (FCN) to generate fix-sized spatial feature maps such that pixel-level features are consistent. To match a pair of person images of different sizes, a novel method called Deep Spatial feature Reconstruction (DSR) is further developed to avoid explicit alignment. Specifically, DSR exploits the reconstructing error from popular dictionary learning models to calculate the similarity between different spatial feature maps. In that way, we expect that the proposed FCN can decrease the similarity of coupled images from different persons and increase that from the same person. Experimental results on two partial person datasets demonstrate the efficiency and effectiveness of the proposed method in comparison with several state-of-the-art partial person re-id approaches. Additionally, DSR achieves competitive results on a benchmark person dataset Market1501 with 83.58\% Rank-1 accuracy.

Limited capture range, and the requirement to provide high quality initialization for optimization-based 2D/3D image registration methods, can significantly degrade the performance of 3D image reconstruction and motion compensation pipelines. Challenging clinical imaging scenarios, which contain significant subject motion such as fetal in-utero imaging, complicate the 3D image and volume reconstruction process. In this paper we present a learning based image registration method capable of predicting 3D rigid transformations of arbitrarily oriented 2D image slices, with respect to a learned canonical atlas co-ordinate system. Only image slice intensity information is used to perform registration and canonical alignment, no spatial transform initialization is required. To find image transformations we utilize a Convolutional Neural Network (CNN) architecture to learn the regression function capable of mapping 2D image slices to a 3D canonical atlas space. We extensively evaluate the effectiveness of our approach quantitatively on simulated Magnetic Resonance Imaging (MRI), fetal brain imagery with synthetic motion and further demonstrate qualitative results on real fetal MRI data where our method is integrated into a full reconstruction and motion compensation pipeline. Our learning based registration achieves an average spatial prediction error of 7 mm on simulated data and produces qualitatively improved reconstructions for heavily moving fetuses with gestational ages of approximately 20 weeks. Our model provides a general and computationally efficient solution to the 2D/3D registration initialization problem and is suitable for real-time scenarios.

北京阿比特科技有限公司