亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We give an almost complete characterization of the hardness of $c$-coloring $\chi$-chromatic graphs with distributed algorithms, for a wide range of models of distributed computing. In particular, we show that these problems do not admit any distributed quantum advantage. To do that: 1) We give a new distributed algorithm that finds a $c$-coloring in $\chi$-chromatic graphs in $\tilde{\mathcal{O}}(n^{\frac{1}{\alpha}})$ rounds, with $\alpha = \bigl\lfloor\frac{c-1}{\chi - 1}\bigr\rfloor$. 2) We prove that any distributed algorithm for this problem requires $\Omega(n^{\frac{1}{\alpha}})$ rounds. Our upper bound holds in the classical, deterministic LOCAL model, while the near-matching lower bound holds in the non-signaling model. This model, introduced by Arfaoui and Fraigniaud in 2014, captures all models of distributed graph algorithms that obey physical causality; this includes not only classical deterministic LOCAL and randomized LOCAL but also quantum-LOCAL, even with a pre-shared quantum state. We also show that similar arguments can be used to prove that, e.g., 3-coloring 2-dimensional grids or $c$-coloring trees remain hard problems even for the non-signaling model, and in particular do not admit any quantum advantage. Our lower-bound arguments are purely graph-theoretic at heart; no background on quantum information theory is needed to establish the proofs.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 講稿 · 論文 · 離散數學 ·
2024 年 1 月 5 日

Let $G$ be a graph of order $n$. A classical upper bound for the domination number of a graph $G$ having no isolated vertices is $\lfloor\frac{n}{2}\rfloor$. However, for several families of graphs, we have $\gamma(G) \le \lfloor\sqrt{n}\rfloor$ which gives a substantially improved upper bound. In this paper, we give a condition necessary for a graph $G$ to have $\gamma(G) \le \lfloor\sqrt{n}\rfloor$, and some conditions sufficient for a graph $G$ to have $\gamma(G) \le \lfloor\sqrt{n}\rfloor$. We also present a characterization of all connected graphs $G$ of order $n$ with $\gamma(G) = \lfloor\sqrt{n}\rfloor$. Further, we prove that for a graph $G$ not satisfying $rad(G)=diam(G)=rad(\overline{G})=diam(\overline{G})=2$, deciding whether $\gamma(G) \le \lfloor\sqrt{n}\rfloor$ or $\gamma(\overline{G}) \le \lfloor\sqrt{n}\rfloor$ can be done in polynomial time. We conjecture that this decision problem can be solved in polynomial time for any graph $G$.

We study least-squares trace regression when the parameter is the sum of a $r$-low-rank matrix and a $s$-sparse matrix and a fraction $\epsilon$ of the labels is corrupted. For subgaussian distributions and feature-dependent noise, we highlight three needed design properties, each one derived from a different process inequality: a "product process inequality", "Chevet's inequality" and a "multiplier process inequality". These properties handle, simultaneously, additive decomposition, label contamination and design-noise interaction. They imply the near-optimality of a tractable estimator with respect to the effective dimensions $d_{eff,r}$ and $d_{eff,s}$ of the low-rank and sparse components, $\epsilon$ and the failure probability $\delta$. The near-optimal rate is $\mathsf{r}(n,d_{eff,r}) + \mathsf{r}(n,d_{eff,s}) + \sqrt{(1+\log(1/\delta))/n} + \epsilon\log(1/\epsilon)$, where $\mathsf{r}(n,d_{eff,r})+\mathsf{r}(n,d_{eff,s})$ is the optimal rate in average with no contamination. Our estimator is adaptive to $(s,r,\epsilon,\delta)$ and, for fixed absolute constant $c>0$, it attains the mentioned rate with probability $1-\delta$ uniformly over all $\delta\ge\exp(-cn)$. Without matrix decomposition, our analysis also entails optimal bounds for a robust estimator adapted to the noise variance. Our estimators are based on "sorted" versions of Huber's loss. We present simulations matching the theory. In particular, it reveals the superiority of "sorted" Huber's losses over the classical Huber's loss.

This paper describes a class of shape optimization problems for optical metamaterials comprised of periodic microscale inclusions composed of a dielectric, low-dimensional material suspended in a non-magnetic bulk dielectric. The shape optimization approach is based on a homogenization theory for time-harmonic Maxwell's equations that describes effective material parameters for the propagation of electromagnetic waves through the metamaterial. The control parameter of the optimization is a deformation field representing the deviation of the microscale geometry from a reference configuration of the cell problem. This allows for describing the homogenized effective permittivity tensor as a function of the deformation field. We show that the underlying deformed cell problem is well-posed and regular. This, in turn, proves that the shape optimization problem is well-posed. In addition, a numerical scheme is formulated that utilizes an adjoint formulation with either gradient descent or BFGS as optimization algorithms. The developed algorithm is tested numerically on a number of prototypical shape optimization problems with a prescribed effective permittivity tensor as the target.

The mutual-visibility problem in a graph $G$ asks for the cardinality of a largest set of vertices $S\subseteq V(G)$ so that for any two vertices $x,y\in S$ there is a shortest $x,y$-path $P$ so that all internal vertices of $P$ are not in $S$. This is also said as $x,y$ are visible with respect to $S$, or $S$-visible for short. Variations of this problem are known, based on the extension of the visibility property of vertices that are in and/or outside $S$. Such variations are called total, outer and dual mutual-visibility problems. This work is focused on studying the corresponding four visibility parameters in graphs of diameter two, throughout showing bounds and/or closed formulae for these parameters. The mutual-visibility problem in the Cartesian product of two complete graphs is equivalent to (an instance of) the celebrated Zarankievicz's problem. Here we study the dual and outer mutual-visibility problem for the Cartesian product of two complete graphs and all the mutual-visibility problems for the direct product of such graphs as well. We also study all the mutual-visibility problems for the line graphs of complete and complete bipartite graphs. As a consequence of this study, we present several relationships between the mentioned problems and some instances of the classical Tur\'an problem. Moreover, we study the visibility problems for cographs and several non-trivial diameter-two graphs of minimum size.

We propose a finite difference scheme for the numerical solution of a two-dimensional singularly perturbed convection-diffusion partial differential equation whose solution features interacting boundary and interior layers, the latter due to discontinuities in source term. The problem is posed on the unit square. The second derivative is multiplied by a singular perturbation parameter, $\epsilon$, while the nature of the first derivative term is such that flow is aligned with a boundary. These two facts mean that solutions tend to exhibit layers of both exponential and characteristic type. We solve the problem using a finite difference method, specially adapted to the discontinuities, and applied on a piecewise-uniform (Shishkin). We prove that that the computed solution converges to the true one at a rate that is independent of the perturbation parameter, and is nearly first-order. We present numerical results that verify that these results are sharp.

There is a folkloric belief that a depth-$\Theta(m)$ quantum circuit is needed to estimate the trace of the product of $m$ density matrices (i.e., a multivariate trace), a subroutine crucial to applications in condensed matter and quantum information science. We prove that this belief is overly conservative by constructing a constant quantum-depth circuit for the task, inspired by the method of Shor error correction. Furthermore, our circuit demands only local gates in a two dimensional circuit -- we show how to implement it in a highly parallelized way on an architecture similar to that of Google's Sycamore processor. With these features, our algorithm brings the central task of multivariate trace estimation closer to the capabilities of near-term quantum processors. We instantiate the latter application with a theorem on estimating nonlinear functions of quantum states with "well-behaved" polynomial approximations.

A simple and effective method for the alignment of generative models is the best-of-$n$ policy, where $n$ samples are drawn from a base policy, and ranked based on a reward function, and the highest ranking one is selected. A commonly used analytical expression in the literature claims that the KL divergence between the best-of-$n$ policy and the base policy is equal to $\log (n) - (n-1)/n.$ We disprove the validity of this claim, and show that it is an upper bound on the actual KL divergence. We also explore the tightness of this upper bound in different regimes. Finally, we propose a new estimator for the KL divergence and empirically show that it provides a tight approximation through a few examples.

Network meta-analysis (NMA) combines evidence from multiple trials to compare the effectiveness of a set of interventions. In public health research, interventions are often complex, made up of multiple components or features. This makes it difficult to define a common set of interventions on which to perform the analysis. One approach to this problem is component network meta-analysis (CNMA) which uses a meta-regression framework to define each intervention as a subset of components whose individual effects combine additively. In this paper, we are motivated by a systematic review of complex interventions to prevent obesity in children. Due to considerable heterogeneity across the trials, these interventions cannot be expressed as a subset of components but instead are coded against a framework of characteristic features. To analyse these data, we develop a bespoke CNMA-inspired model that allows us to identify the most important features of interventions. We define a meta-regression model with covariates on three levels: intervention, study, and follow-up time, as well as flexible interaction terms. By specifying different regression structures for trials with and without a control arm, we relax the assumption from previous CNMA models that a control arm is the absence of intervention components. Furthermore, we derive a correlation structure that accounts for trials with multiple intervention arms and multiple follow-up times. Although our model was developed for the specifics of the obesity data set, it has wider applicability to any set of complex interventions that can be coded according to a set of shared features.

By conceiving physical systems as 3D many-body point clouds, geometric graph neural networks (GNNs), such as SE(3)/E(3) equivalent GNNs, have showcased promising performance. In particular, their effective message-passing mechanics make them adept at modeling molecules and crystalline materials. However, current geometric GNNs only offer a mean-field approximation of the many-body system, encapsulated within two-body message passing, thus falling short in capturing intricate relationships within these geometric graphs. To address this limitation, tensor networks, widely employed by computational physics to handle manybody systems using high-order tensors, have been introduced. Nevertheless, integrating these tensorized networks into the message-passing framework of GNNs faces scalability and symmetry conservation (e.g., permutation and rotation) challenges. In response, we introduce an innovative equivariant Matrix Product State (MPS)-based message-passing strategy, through achieving an efficient implementation of the tensor contraction operation. Our method effectively models complex many-body relationships, suppressing mean-field approximations, and captures symmetries within geometric graphs. Importantly, it seamlessly replaces the standard message-passing and layer-aggregation modules intrinsic to geometric GNNs. We empirically validate the superior accuracy of our approach on benchmark tasks, including predicting classical Newton systems and quantum tensor Hamiltonian matrices. To our knowledge, our approach represents the inaugural utilization of parameterized geometric tensor networks.

A well-balanced second-order finite volume scheme is proposed and analyzed for a 2 X 2 system of non-linear partial differential equations which describes the dynamics of growing sandpiles created by a vertical source on a flat, bounded rectangular table in multiple dimensions. To derive a second-order scheme, we combine a MUSCL type spatial reconstruction with strong stability preserving Runge-Kutta time stepping method. The resulting scheme is ensured to be well-balanced through a modified limiting approach that allows the scheme to reduce to well-balanced first-order scheme near the steady state while maintaining the second-order accuracy away from it. The well-balanced property of the scheme is proven analytically in one dimension and demonstrated numerically in two dimensions. Additionally, numerical experiments reveal that the second-order scheme reduces finite time oscillations, takes fewer time iterations for achieving the steady state and gives sharper resolutions of the physical structure of the sandpile, as compared to the existing first-order schemes of the literature.

北京阿比特科技有限公司