亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Public opinion is shaped by the information news media provide, and that information in turn may be shaped by the ideological preferences of media outlets. But while much attention has been devoted to media bias via overt ideological language or topic selection, a more unobtrusive way in which the media shape opinion is via the strategic inclusion or omission of partisan events that may support one side or the other. We develop a latent variable-based framework to predict the ideology of news articles by comparing multiple articles on the same story and identifying partisan events whose inclusion or omission reveals ideology. Our experiments first validate the existence of partisan event selection, and then show that article alignment and cross-document comparison detect partisan events and article ideology better than competitive baselines. Our results reveal the high-level form of media bias, which is present even among mainstream media with strong norms of objectivity and nonpartisanship. Our codebase and dataset are available at //github.com/launchnlp/ATC.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 潛在 · 解碼 · 潛變量/隱變量 · MoDELS ·
2023 年 12 月 16 日

Generating music with emotion is an important task in automatic music generation, in which emotion is evoked through a variety of musical elements (such as pitch and duration) that change over time and collaborate with each other. However, prior research on deep learning-based emotional music generation has rarely explored the contribution of different musical elements to emotions, let alone the deliberate manipulation of these elements to alter the emotion of music, which is not conducive to fine-grained element-level control over emotions. To address this gap, we present a novel approach employing musical element-based regularization in the latent space to disentangle distinct elements, investigate their roles in distinguishing emotions, and further manipulate elements to alter musical emotions. Specifically, we propose a novel VQ-VAE-based model named MusER. MusER incorporates a regularization loss to enforce the correspondence between the musical element sequences and the specific dimensions of latent variable sequences, providing a new solution for disentangling discrete sequences. Taking advantage of the disentangled latent vectors, a two-level decoding strategy that includes multiple decoders attending to latent vectors with different semantics is devised to better predict the elements. By visualizing latent space, we conclude that MusER yields a disentangled and interpretable latent space and gain insights into the contribution of distinct elements to the emotional dimensions (i.e., arousal and valence). Experimental results demonstrate that MusER outperforms the state-of-the-art models for generating emotional music in both objective and subjective evaluation. Besides, we rearrange music through element transfer and attempt to alter the emotion of music by transferring emotion-distinguishable elements.

Scientific research organizations that are developing and deploying Artificial Intelligence (AI) systems are at the intersection of technological progress and ethical considerations. The push for Responsible AI (RAI) in such institutions underscores the increasing emphasis on integrating ethical considerations within AI design and development, championing core values like fairness, accountability, and transparency. For scientific research organizations, prioritizing these practices is paramount not just for mitigating biases and ensuring inclusivity, but also for fostering trust in AI systems among both users and broader stakeholders. In this paper, we explore the practices at a research organization concerning RAI practices, aiming to assess the awareness and preparedness regarding the ethical risks inherent in AI design and development. We have adopted a mixed-method research approach, utilising a comprehensive survey combined with follow-up in-depth interviews with selected participants from AI-related projects. Our results have revealed certain knowledge gaps concerning ethical, responsible, and inclusive AI, with limitations in awareness of the available AI ethics frameworks. This revealed an overarching underestimation of the ethical risks that AI technologies can present, especially when implemented without proper guidelines and governance. Our findings reveal the need for a holistic and multi-tiered strategy to uplift capabilities and better support science research teams for responsible, ethical, and inclusive AI development and deployment.

Although there are currently many benchmarks available for evaluating the long context understanding and reasoning capability of large language models, with the expansion of the context window in these models, the existing long context benchmarks are no longer sufficient for evaluating the long context understanding and reasoning capability of large language models. In this paper, we have developed a fresh long context evaluation benchmark, which we name it Marathon in the form of multiple choice questions, inspired by benchmarks such as MMLU, for assessing the long context comprehension capability of large language models quickly, accurately, and objectively. We have evaluated several of the latest and most popular large language models, as well as three recent and effective long context optimization methods, on our benchmark. This showcases the long context reasoning and comprehension capabilities of these large language models and validates the effectiveness of these optimization methods. Marathon is available at //huggingface.co/datasets/Lemoncoke/Marathon.

Revealing the framing of news articles is an important yet neglected task in information seeking and retrieval. In the present work, we present FrameFinder, an open tool for extracting and analyzing frames in textual data. FrameFinder visually represents the frames of text from three perspectives, i.e., (i) frame labels, (ii) frame dimensions, and (iii) frame structure. By analyzing the well-established gun violence frame corpus, we demonstrate the merits of our proposed solution to support social science research and call for subsequent integration into information interactions.

The resilience of internet service is crucial for ensuring consistent communication, facilitating emergency response in digitally-dependent society. Due to empirical data constraints, there has been limited research on internet service disruptions during extreme weather events. To bridge this gap, this study utilizes observational datasets on internet performance to quantitatively assess extent of internet disruption during two recent extreme weather events. Taking Harris County in United States as study region, we jointly analyzed the hazard severity and the associated internet disruptions in two extreme weather events. The results show that hazard events significantly impacted regional internet connectivity. There exists a pronounced temporal synchronicity between magnitude of disruption and hazard severity: as severity of hazards intensifies, internet disruptions correspondingly escalate, and eventually return to baseline levels post-event. Spatial analyses show internet service disruptions can happen even in areas not directly impacted by hazards, demonstrating that repercussions of hazards extend beyond immediate area of impact. This interplay of temporal synchronization and spatial variance underscores complex relationships between hazard severity and Internet disruption. Socio-demographic analysis suggests vulnerable communities, already grappling with myriad challenges, face exacerbated service disruptions during hazard events, emphasizing the need for prioritized disaster mitigation strategiesfor improving the resilience of internet services. To the best of our knowledge, this research is among the first studies to examine the Internet disruptions during hazardous events using a quantitative observational dataset. Insights obtained hold significant implications for city administrators, guiding them towards more resilient and equitable infrastructure planning.

This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.

Large knowledge graphs often grow to store temporal facts that model the dynamic relations or interactions of entities along the timeline. Since such temporal knowledge graphs often suffer from incompleteness, it is important to develop time-aware representation learning models that help to infer the missing temporal facts. While the temporal facts are typically evolving, it is observed that many facts often show a repeated pattern along the timeline, such as economic crises and diplomatic activities. This observation indicates that a model could potentially learn much from the known facts appeared in history. To this end, we propose a new representation learning model for temporal knowledge graphs, namely CyGNet, based on a novel timeaware copy-generation mechanism. CyGNet is not only able to predict future facts from the whole entity vocabulary, but also capable of identifying facts with repetition and accordingly predicting such future facts with reference to the known facts in the past. We evaluate the proposed method on the knowledge graph completion task using five benchmark datasets. Extensive experiments demonstrate the effectiveness of CyGNet for predicting future facts with repetition as well as de novo fact prediction.

User engagement is a critical metric for evaluating the quality of open-domain dialogue systems. Prior work has focused on conversation-level engagement by using heuristically constructed features such as the number of turns and the total time of the conversation. In this paper, we investigate the possibility and efficacy of estimating utterance-level engagement and define a novel metric, {\em predictive engagement}, for automatic evaluation of open-domain dialogue systems. Our experiments demonstrate that (1) human annotators have high agreement on assessing utterance-level engagement scores; (2) conversation-level engagement scores can be predicted from properly aggregated utterance-level engagement scores. Furthermore, we show that the utterance-level engagement scores can be learned from data. These scores can improve automatic evaluation metrics for open-domain dialogue systems, as shown by correlation with human judgements. This suggests that predictive engagement can be used as a real-time feedback for training better dialogue models.

Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.

Spectral clustering is a leading and popular technique in unsupervised data analysis. Two of its major limitations are scalability and generalization of the spectral embedding (i.e., out-of-sample-extension). In this paper we introduce a deep learning approach to spectral clustering that overcomes the above shortcomings. Our network, which we call SpectralNet, learns a map that embeds input data points into the eigenspace of their associated graph Laplacian matrix and subsequently clusters them. We train SpectralNet using a procedure that involves constrained stochastic optimization. Stochastic optimization allows it to scale to large datasets, while the constraints, which are implemented using a special-purpose output layer, allow us to keep the network output orthogonal. Moreover, the map learned by SpectralNet naturally generalizes the spectral embedding to unseen data points. To further improve the quality of the clustering, we replace the standard pairwise Gaussian affinities with affinities leaned from unlabeled data using a Siamese network. Additional improvement can be achieved by applying the network to code representations produced, e.g., by standard autoencoders. Our end-to-end learning procedure is fully unsupervised. In addition, we apply VC dimension theory to derive a lower bound on the size of SpectralNet. State-of-the-art clustering results are reported on the Reuters dataset. Our implementation is publicly available at //github.com/kstant0725/SpectralNet .

北京阿比特科技有限公司