亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Conversational recommender system (CRS) interacts with users through multi-turn dialogues in natural language, which aims to provide high-quality recommendations for user's instant information need. Although great efforts have been made to develop effective CRS, most of them still focus on the contextual information from the current dialogue, usually suffering from the data scarcity issue. Therefore, we consider leveraging historical dialogue data to enrich the limited contexts of the current dialogue session. In this paper, we propose a novel multi-grained hypergraph interest modeling approach to capture user interest beneath intricate historical data from different perspectives. As the core idea, we employ hypergraph to represent complicated semantic relations underlying historical dialogues. In our approach, we first employ the hypergraph structure to model users' historical dialogue sessions and form a session-based hypergraph, which captures coarse-grained, session-level relations. Second, to alleviate the issue of data scarcity, we use an external knowledge graph and construct a knowledge-based hypergraph considering fine-grained, entity-level semantics. We further conduct multi-grained hypergraph convolution on the two kinds of hypergraphs, and utilize the enhanced representations to develop interest-aware CRS. Extensive experiments on two benchmarks ReDial and TG-ReDial validate the effectiveness of our approach on both recommendation and conversation tasks. Code is available at: //github.com/RUCAIBox/MHIM.

相關內容

New intent discovery is of great value to natural language processing, allowing for a better understanding of user needs and providing friendly services. However, most existing methods struggle to capture the complicated semantics of discrete text representations when limited or no prior knowledge of labeled data is available. To tackle this problem, we propose a novel clustering framework, USNID, for unsupervised and semi-supervised new intent discovery, which has three key technologies. First, it fully utilizes unsupervised or semi-supervised data to mine shallow semantic similarity relations and provide well-initialized representations for clustering. Second, it designs a centroid-guided clustering mechanism to address the issue of cluster allocation inconsistency and provide high-quality self-supervised targets for representation learning. Third, it captures high-level semantics in unsupervised or semi-supervised data to discover fine-grained intent-wise clusters by optimizing both cluster-level and instance-level objectives. We also propose an effective method for estimating the cluster number in open-world scenarios without knowing the number of new intents beforehand. USNID performs exceptionally well on several benchmark intent datasets, achieving new state-of-the-art results in unsupervised and semi-supervised new intent discovery and demonstrating robust performance with different cluster numbers.

Visual language models (VLMs) rapidly progressed with the recent success of large language models. There have been growing efforts on visual instruction tuning to extend the LLM with visual inputs, but lacks an in-depth study of the visual language pre-training process, where the model learns to perform joint modeling on both modalities. In this work, we examine the design options for VLM pre-training by augmenting LLM towards VLM through step-by-step controllable comparisons. We introduce three main findings: (1) freezing LLMs during pre-training can achieve decent zero-shot performance, but lack in-context learning capability, which requires unfreezing the LLM; (2) interleaved pre-training data is beneficial whereas image-text pairs alone are not optimal; (3) re-blending text-only instruction data to image-text data during instruction fine-tuning not only remedies the degradation of text-only tasks, but also boosts VLM task accuracy. With an enhanced pre-training recipe we build VILA, a Visual Language model family that consistently outperforms the state-of-the-art models, e.g., LLaVA-1.5, across main benchmarks without bells and whistles. Multi-modal pre-training also helps unveil appealing properties of VILA, including multi-image reasoning, enhanced in-context learning, and better world knowledge.

Code pre-trained language models (CPLMs) have received great attention since they can benefit various tasks that facilitate software development and maintenance. However, CPLMs are trained on massive open-source code, raising concerns about potential data infringement. This paper launches the first study of detecting unauthorized code use in CPLMs, i.e., Code Membership Inference (CMI) task. We design a framework Buzzer for different settings of CMI. Buzzer deploys several inference techniques, including distilling the target CPLM, ensemble inference, and unimodal and bimodal calibration. Extensive experiments show that CMI can be achieved with high accuracy using Buzzer. Hence, Buzzer can serve as a CMI tool and help protect intellectual property rights.

Recent progress in large language models (LLMs) has demonstrated the ability to learn and leverage Internet-scale knowledge through pre-training with autoregressive models. Unfortunately, applying such models to settings with embodied agents, such as robots, is challenging due to their lack of experience with the physical world, inability to parse non-language observations, and ignorance of rewards or safety constraints that robots may require. On the other hand, language-conditioned robotic policies that learn from interaction data can provide the necessary grounding that allows the agent to be correctly situated in the real world, but such policies are limited by the lack of high-level semantic understanding due to the limited breadth of the interaction data available for training them. Thus, if we want to make use of the semantic knowledge in a language model while still situating it in an embodied setting, we must construct an action sequence that is both likely according to the language model and also realizable according to grounded models of the environment. We frame this as a problem similar to probabilistic filtering: decode a sequence that both has high probability under the language model and high probability under a set of grounded model objectives. We demonstrate how such grounded models can be obtained across three simulation and real-world domains, and that the proposed decoding strategy is able to solve complex, long-horizon embodiment tasks in a robotic setting by leveraging the knowledge of both models. The project's website can be found at grounded-decoding.github.io.

Large language models (LLMs) have the remarkable ability to solve new tasks with just a few examples, but they need access to the right tools. Retrieval Augmented Generation (RAG) addresses this problem by retrieving a list of relevant tools for a given task. However, RAG's tool retrieval step requires all the required information to be explicitly present in the query. This is a limitation, as semantic search, the widely adopted tool retrieval method, can fail when the query is incomplete or lacks context. To address this limitation, we propose Context Tuning for RAG, which employs a smart context retrieval system to fetch relevant information that improves both tool retrieval and plan generation. Our lightweight context retrieval model uses numerical, categorical, and habitual usage signals to retrieve and rank context items. Our empirical results demonstrate that context tuning significantly enhances semantic search, achieving a 3.5-fold and 1.5-fold improvement in Recall@K for context retrieval and tool retrieval tasks respectively, and resulting in an 11.6% increase in LLM-based planner accuracy. Additionally, we show that our proposed lightweight model using Reciprocal Rank Fusion (RRF) with LambdaMART outperforms GPT-4 based retrieval. Moreover, we observe context augmentation at plan generation, even after tool retrieval, reduces hallucination.

The remarkable natural language understanding, reasoning, and generation capabilities of large language models (LLMs) have made them attractive for application to video question answering (Video QA) tasks, utilizing video tokens as contextual input. However, employing LLMs for long video understanding presents significant challenges and remains under-explored. The extensive number of video tokens leads to considerable computational costs for LLMs while using aggregated tokens results in loss of vision details. Moreover, the presence of abundant question-irrelevant tokens introduces noise to the video QA process. To address these issues, we introduce a simple yet effective retrieval-based video language model (R-VLM) for efficient and interpretable long video QA. Specifically, given a question (query) and a long video, our model identifies and selects the most relevant $K$ video chunks and uses their associated visual tokens to serve as context for the LLM inference. This effectively reduces the number of video tokens, eliminates noise interference, and enhances system performance. Our experimental results validate the effectiveness of our framework for comprehending long videos. Furthermore, based on the retrieved chunks, our model is interpretable that provides the justifications on where we get the answers.

Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.

Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy with four perspectives. Next, we describe how to adapt the knowledge of PTMs to the downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks.

Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.

Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.

北京阿比特科技有限公司