亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper addresses the problem of scheduling non-preemptive tasks with release jitter and execution time variation on a uniprocessor. We show that the schedulability analysis based on schedule graph generation, proposed by Nasri and Brandenburg [RTSS 2017], produces negative results when it could be easily avoided by slightly reformalizing the notion of non-work-conserving policies. In this work, we develop a schedulability analysis that constructs the schedule graph using new job-eligibility rules and is exact and sustainable for both work-conserving and enhanced formalization of non-work-conserving policies. Besides, the experimental evaluation shows that our schedulability analysis is substantially faster.

相關內容

Fog computing brings about a transformative shift in data management, presenting unprecedented opportunities for enhanced performance and reduced latency. However, one of the key aspects of fog computing revolves around ensuring efficient power and reliability management. To address this challenge, we have introduced a novel model that proposes a non-cooperative game theory-based strategy to strike a balance between power consumption and reliability in decision-making processes. Our proposed model capitalizes on the Cold Primary/Backup strategy (CPB) to guarantee reliability target by re-executing tasks to different nodes when a fault occurs, while also leveraging Dynamic Voltage and Frequency Scaling (DVFS) to reduce power consumption during task execution and maximizing overall efficiency. Non-cooperative game theory plays a pivotal role in our model, as it facilitates the development of strategies and solutions that uphold reliability while reducing power consumption. By treating the trade-off between power and reliability as a non-cooperative game, our proposed method yields significant energy savings, with up to a 35% reduction in energy consumption, 41% decrease in wait time, and 31% shorter completion time compared to state-of-the-art approaches. Our findings underscore the value of game theory in optimizing power and reliability within fog computing environments, demonstrating its potential for driving substantial improvements

This paper presents the development of a software tool that enables the translation of first-order predicate logic with at most three variables into relation algebra. The tool was developed using the Z3 theorem prover, leveraging its capabilities to enhance reliability, generate code, and expedite development. The resulting standalone Python program allows users to translate first-order logic formulas into relation algebra, eliminating the need to work with relation algebra explicitly. This paper outlines the theoretical background of first-order logic, relation algebra, and the translation process. It also describes the implementation details, including validation of the software tool using Z3 for testing correctness. By demonstrating the feasibility of utilizing first-order logic as an alternative language for expressing relation algebra, this tool paves the way for integrating first-order logic into tools traditionally relying on relation algebra as input.

Middleware, third-party software intermediaries between users and platforms, has been broached as a means to decentralize the power of social media platforms and enhance user agency. Middleware may enable a more user-centric and democratic approach to shaping digital experiences, offering a flexible architecture as an alternative to both centrally controlled, opaque platforms and an unmoderated, uncurated internet. The widespread adoption of open middleware has long hinged on the cooperation of established major platforms; however, the recent growth of federated platforms, such as Mastodon and Bluesky, has led to increased offerings and user awareness. In this report we consider the potential of middleware as a means of enabling greater user control over curation and moderation - two aspects of the social media experience that are often mired in controversy. We evaluate the trade-offs and negative externalities it might create, and discuss the technological, regulatory, and market dynamics that could either support or hinder its implementation.

This paper presents HyperGraphOS, a significant innovation in the domain of operating systems, specifically designed to address the needs of scientific and engineering domains. This platform aims to combine model-based engineering, graph modeling, data containers, and documents, along with tools for handling computational elements. HyperGraphOS functions as an Operating System offering to users an infinite workspace for creating and managing complex models represented as graphs with customizable semantics. By leveraging a web-based architecture, it requires only a modern web browser for access, allowing organization of knowledge, documents, and content into models represented in a network of workspaces. Elements of the workspace are defined in terms of domain-specific languages (DSLs). These DSLs are pivotal for navigating workspaces, generating code, triggering AI components, and organizing information and processes. The models' dual nature as both visual drawings and data structures allows dynamic modifications and inspections both interactively as well as programaticaly. We evaluated HyperGraphOS's efficiency and applicability across a large set of diverse domains, including the design and development of a virtual Avatar dialog system, a robotic task planner based on large language models (LLMs), a new meta-model for feature-based code development and many others. Our findings show that HyperGraphOS offers substantial benefits in the interaction with a computer as information system, as platoform for experiments and data analysis, as streamlined engineering processes, demonstrating enhanced flexibility in managing data, computation and documents, showing an innovative approaches to persistent desktop environments.

We present Bluebell, a program logic for reasoning about probabilistic programs where unary and relational styles of reasoning come together to create new reasoning tools. Unary-style reasoning is very expressive and is powered by foundational mechanisms to reason about probabilistic behaviour like independence and conditioning. The relational style of reasoning, on the other hand, naturally shines when the properties of interest compare the behaviour of similar programs (e.g. when proving differential privacy) managing to avoid having to characterize the output distributions of the individual programs. So far, the two styles of reasoning have largely remained separate in the many program logics designed for the deductive verification of probabilistic programs. In Bluebell, we unify these styles of reasoning through the introduction of a new modality called "joint conditioning" that can encode and illuminate the rich interaction between conditional independence and relational liftings; the two powerhouses from the two styles of reasoning.

Neural networks are commonly known to be vulnerable to adversarial attacks mounted through subtle perturbation on the input data. Recent development in voice-privacy protection has shown the positive use cases of the same technique to conceal speaker's voice attribute with additive perturbation signal generated by an adversarial network. This paper examines the reversibility property where an entity generating the adversarial perturbations is authorized to remove them and restore original speech (e.g., the speaker him/herself). A similar technique could also be used by an investigator to deanonymize a voice-protected speech to restore criminals' identities in security and forensic analysis. In this setting, the perturbation generative module is assumed to be known in the removal process. To this end, a joint training of perturbation generation and removal modules is proposed. Experimental results on the LibriSpeech dataset demonstrated that the subtle perturbations added to the original speech can be predicted from the anonymized speech while achieving the goal of privacy protection. By removing these perturbations from the anonymized sample, the original speech can be restored. Audio samples can be found in \url{//voiceprivacy.github.io/Perturbation-Generation-Removal/}.

To address the challenges of robust data transmission over complex time-varying channels, this paper introduces channel learning and enhanced adaptive reconstruction (CLEAR) strategy for semantic communications. CLEAR integrates deep joint source-channel coding (DeepJSCC) with an adaptive diffusion denoising model (ADDM) to form a unique framework. It leverages a trainable encoder-decoder architecture to encode data into complex semantic codes, which are then transmitted and reconstructed while minimizing distortion, ensuring high semantic fidelity. By addressing multipath effects, frequency-selective fading, phase noise, and Doppler shifts, CLEAR achieves high semantic fidelity and reliable transmission across diverse signal-to-noise ratios (SNRs) and channel conditions. Extensive experiments demonstrate that CLEAR achieves a 2.3 dB gain on peak signal-to-noise ratio (PSNR) over the existing state-of-the-art method, DeepJSCC-V. Furthermore, the results verify that CLEAR is robust against varying channel conditions, particularly in scenarios characterized by high Doppler shifts and strong phase noise.

The year 2022 marks a watershed in technology, and arguably in human history, with the release of powerful generative AIs capable of convincingly performing creative tasks. With the help of these systems, anyone can create something that would previously have been considered a remarkable work of art. In human-AI collaboration, the computer seems to have become more than a tool. Many who have made their first contact with current generative AIs see them as "creativity machines" while for others the term "machine creativity" remains an oxymoron. This article is about (the possibility of) creativity in computers within the current Machine Learning paradigm. It outlines some of the key concepts behind the technologies and the innovations that have contributed to this qualitative shift, with a focus on text-to-image systems. The nature of Artificial Creativity as such is discussed, as well as what this might mean for art. AI may become a responsible collaborator with elements of independent machine authorship in the artistic process.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.

北京阿比特科技有限公司