亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce RJUA-QA, a novel medical dataset for question answering (QA) and reasoning with clinical evidence, contributing to bridge the gap between general large language models (LLMs) and medical-specific LLM applications. RJUA-QA is derived from realistic clinical scenarios and aims to facilitate LLMs in generating reliable diagnostic and advice. The dataset contains 2,132 curated Question-Context-Answer pairs, corresponding about 25,000 diagnostic records and clinical cases. The dataset covers 67 common urological disease categories, where the disease coverage exceeds 97.6\% of the population seeking medical services in urology. Each data instance in RJUA-QA comprises: (1) a question mirroring real patient to inquiry about clinical symptoms and medical conditions, (2) a context including comprehensive expert knowledge, serving as a reference for medical examination and diagnosis, (3) a doctor response offering the diagnostic conclusion and suggested examination guidance, (4) a diagnosed clinical disease as the recommended diagnostic outcome, and (5) clinical advice providing recommendations for medical examination. RJUA-QA is the first medical QA dataset for clinical reasoning over the patient inquiries, where expert-level knowledge and experience are required for yielding diagnostic conclusions and medical examination advice. A comprehensive evaluation is conducted to evaluate the performance of both medical-specific and general LLMs on the RJUA-QA dataset.

相關內容

自(zi)(zi)動(dong)問(wen)答(da)(da)(Question Answering, QA)是指利用(yong)計算機自(zi)(zi)動(dong)回答(da)(da)用(yong)戶所提出的問(wen)題(ti)以滿足用(yong)戶知識(shi)需求(qiu)的任務(wu)。不同于現有搜(sou)索(suo)引擎,問(wen)答(da)(da)系統是信息服(fu)務(wu)的一種高級形式,系統返回用(yong)戶的不再是基(ji)于關鍵詞匹配排序的文檔列(lie)表(biao),而是精準的自(zi)(zi)然語(yu)言答(da)(da)案。近年(nian)來,隨著人(ren)工智能的飛速發展,自(zi)(zi)動(dong)問(wen)答(da)(da)已經(jing)成(cheng)為倍受關注且(qie)發展前(qian)景廣泛的研(yan)究(jiu)方向。

知識薈萃

精(jing)品入門和進階教程、論文和代碼整理等(deng)

更多

查(cha)看相關VIP內(nei)容(rong)、論文、資訊等

We introduce AnyTool, a large language model agent designed to revolutionize the utilization of a vast array of tools in addressing user queries. We utilize over 16,000 APIs from Rapid API, operating under the assumption that a subset of these APIs could potentially resolve the queries. AnyTool primarily incorporates three elements: an API retriever with a hierarchical structure, a solver aimed at resolving user queries using a selected set of API candidates, and a self-reflection mechanism, which re-activates AnyTool if the initial solution proves impracticable. AnyTool is powered by the function calling feature of GPT-4, eliminating the need for training external modules. We also revisit the evaluation protocol introduced by previous works and identify a limitation in this protocol that leads to an artificially high pass rate. By revising the evaluation protocol to better reflect practical application scenarios, we introduce an additional benchmark, termed AnyToolBench. Experiments across various datasets demonstrate the superiority of our AnyTool over strong baselines such as ToolLLM and a GPT-4 variant tailored for tool utilization. For instance, AnyTool outperforms ToolLLM by +35.4% in terms of average pass rate on ToolBench. Code will be available at //github.com/dyabel/AnyTool.

Generalization capabilities of learning-based medical image segmentation across domains are currently limited by the performance degradation caused by the domain shift, particularly for ultrasound (US) imaging. The quality of US images heavily relies on carefully tuned acoustic parameters, which vary across sonographers, machines, and settings. To improve the generalizability on US images across domains, we propose MI-SegNet, a novel mutual information (MI) based framework to explicitly disentangle the anatomical and domain feature representations; therefore, robust domain-independent segmentation can be expected. Two encoders are employed to extract the relevant features for the disentanglement. The segmentation only uses the anatomical feature map for its prediction. In order to force the encoders to learn meaningful feature representations a cross-reconstruction method is used during training. Transformations, specific to either domain or anatomy are applied to guide the encoders in their respective feature extraction task. Additionally, any MI present in both feature maps is punished to further promote separate feature spaces. We validate the generalizability of the proposed domain-independent segmentation approach on several datasets with varying parameters and machines. Furthermore, we demonstrate the effectiveness of the proposed MI-SegNet serving as a pre-trained model by comparing it with state-of-the-art networks.

Neural shape representation generally refers to representing 3D geometry using neural networks, e.g., to compute a signed distance or occupancy value at a specific spatial position. In this paper, we present a novel encoder-decoder neural network for embedding 3D shapes in a single forward pass. Our architecture is based on a multi-scale hybrid system incorporating graph-based and voxel-based components, as well as a continuously differentiable decoder. Furthermore, the network is trained to solve the Eikonal equation and only requires knowledge of the zero-level set for training and inference. This means that in contrast to most previous work, our network is able to output valid signed distance fields without explicit prior knowledge of non-zero distance values or shape occupancy. We further propose a modification of the loss function in case that surface normals are not well defined, e.g., in the context of non-watertight surfaces and non-manifold geometry. Overall, this can help reduce the computational overhead of training and evaluating neural distance fields, as well as enabling the application to difficult shapes. We finally demonstrate the efficacy, generalizability and scalability of our method on datasets consisting of deforming shapes, both based on simulated data and raw 3D scans. We further show single-class and multi-class encoding, on both fixed and variable vertex-count inputs, showcasing a wide range of possible applications.

Three-dimensional (3D) imaging is popular in medical applications, however, anisotropic 3D volumes with thick, low-spatial-resolution slices are often acquired to reduce scan times. Deep learning (DL) offers a solution to recover high-resolution features through super-resolution reconstruction (SRR). Unfortunately, paired training data is unavailable in many 3D medical applications and therefore we propose a novel unpaired approach; CLADE (Cycle Loss Augmented Degradation Enhancement). CLADE uses a modified CycleGAN architecture with a cycle-consistent gradient mapping loss, to learn SRR of the low-resolution dimension, from disjoint patches of the high-resolution plane within the anisotropic 3D volume data itself. We show the feasibility of CLADE in abdominal MRI and abdominal CT and demonstrate significant improvements in CLADE image quality over low-resolution volumes and state-of-the-art self-supervised SRR; SMORE (Synthetic Multi-Orientation Resolution Enhancement). Quantitative PIQUE (qualitative perception-based image quality evaluator) scores and quantitative edge sharpness (ES - calculated as the maximum gradient of pixel intensities over a border of interest), showed superior performance for CLADE in both MRI and CT. Qualitatively CLADE had the best overall image quality and highest perceptual ES over the low-resolution volumes and SMORE. This paper demonstrates the potential of using CLADE for super-resolution reconstruction of anisotropic 3D medical imaging data without the need for paired 3D training data.

We introduce NeuV-SLAM, a novel dense simultaneous localization and mapping pipeline based on neural multiresolution voxels, characterized by ultra-fast convergence and incremental expansion capabilities. This pipeline utilizes RGBD images as input to construct multiresolution neural voxels, achieving rapid convergence while maintaining robust incremental scene reconstruction and camera tracking. Central to our methodology is to propose a novel implicit representation, termed VDF that combines the implementation of neural signed distance field (SDF) voxels with an SDF activation strategy. This approach entails the direct optimization of color features and SDF values anchored within the voxels, substantially enhancing the rate of scene convergence. To ensure the acquisition of clear edge delineation, SDF activation is designed, which maintains exemplary scene representation fidelity even under constraints of voxel resolution. Furthermore, in pursuit of advancing rapid incremental expansion with low computational overhead, we developed hashMV, a novel hash-based multiresolution voxel management structure. This architecture is complemented by a strategically designed voxel generation technique that synergizes with a two-dimensional scene prior. Our empirical evaluations, conducted on the Replica and ScanNet Datasets, substantiate NeuV-SLAM's exceptional efficacy in terms of convergence speed, tracking accuracy, scene reconstruction, and rendering quality.

Privacy-preserving neural networks have attracted increasing attention in recent years, and various algorithms have been developed to keep the balance between accuracy, computational complexity and information security from the cryptographic view. This work takes a different view from the input data and structure of neural networks. We decompose the input data (e.g., some images) into sensitive and insensitive segments according to importance and privacy. The sensitive segment includes some important and private information such as human faces and we take strong homomorphic encryption to keep security, whereas the insensitive one contains some background and we add perturbations. We propose the bi-CryptoNets, i.e., plaintext and ciphertext branches, to deal with two segments, respectively, and ciphertext branch could utilize the information from plaintext branch by unidirectional connections. We adopt knowledge distillation for our bi-CryptoNets by transferring representations from a well-trained teacher neural network. Empirical studies show the effectiveness and decrease of inference latency for our bi-CryptoNets.

Applying artificial intelligence techniques in medical imaging is one of the most promising areas in medicine. However, most of the recent success in this area highly relies on large amounts of carefully annotated data, whereas annotating medical images is a costly process. In this paper, we propose a novel method, called FocalMix, which, to the best of our knowledge, is the first to leverage recent advances in semi-supervised learning (SSL) for 3D medical image detection. We conducted extensive experiments on two widely used datasets for lung nodule detection, LUNA16 and NLST. Results show that our proposed SSL methods can achieve a substantial improvement of up to 17.3% over state-of-the-art supervised learning approaches with 400 unlabeled CT scans.

We present MMKG, a collection of three knowledge graphs that contain both numerical features and (links to) images for all entities as well as entity alignments between pairs of KGs. Therefore, multi-relational link prediction and entity matching communities can benefit from this resource. We believe this data set has the potential to facilitate the development of novel multi-modal learning approaches for knowledge graphs.We validate the utility ofMMKG in the sameAs link prediction task with an extensive set of experiments. These experiments show that the task at hand benefits from learning of multiple feature types.

We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.

We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.

北京阿比特科技有限公司