亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This work presents the multiharmonic analysis and derivation of functional type a posteriori estimates of a distributed eddy current optimal control problem and its state equation in a time-periodic setting. The existence and uniqueness of the solution of a weak space-time variational formulation for the optimality system and the forward problem are proved by deriving inf-sup and sup-sup conditions. Using the inf-sup and sup-sup conditions, we derive guaranteed, sharp, and fully computable bounds of the approximation error for the optimal control problem and the forward problem in the functional type a posteriori estimation framework. We present here the first computational results on the derived estimates.

相關內容

Problems from metric graph theory such as Metric Dimension, Geodetic Set, and Strong Metric Dimension have recently had a strong impact on the field of parameterized complexity by being the first problems in NP to admit double-exponential lower bounds in the treewidth, and even in the vertex cover number for the latter. We initiate the study of enumerating minimal solution sets for these problems and show that they are also of great interest in enumeration. More specifically, we show that enumerating minimal resolving sets in graphs and minimal geodetic sets in split graphs are equivalent to hypergraph dualization, arguably one of the most important open problems in algorithmic enumeration. This provides two new natural examples to a question that emerged in different works this last decade: for which vertex (or edge) set graph property $\Pi$ is the enumeration of minimal (or maximal) subsets satisfying $\Pi$ equivalent to hypergraph dualization? As only very few properties are known to fit within this context -- namely, properties related to minimal domination -- our results make significant progress in characterizing such properties, and provide new angles of approach for tackling hypergraph dualization. In a second step, we consider cases where our reductions do not apply, namely graphs with no long induced paths, and show these cases to be mainly tractable.

We investigate a class of parametric elliptic semilinear partial differential equations of second order with homogeneous essential boundary conditions, where the coefficients and the right-hand side (and hence the solution) may depend on a parameter. This model can be seen as a reaction-diffusion problem with a polynomial nonlinearity in the reaction term. The efficiency of various numerical approximations across the entire parameter space is closely related to the regularity of the solution with respect to the parameter. We show that if the coefficients and the right-hand side are analytic or Gevrey class regular with respect to the parameter, the same type of parametric regularity is valid for the solution. The key ingredient of the proof is the combination of the alternative-to-factorial technique from our previous work [1] with a novel argument for the treatment of the power-type nonlinearity in the reaction term. As an application of this abstract result, we obtain rigorous convergence estimates for numerical integration of semilinear reaction-diffusion problems with random coefficients using Gaussian and Quasi-Monte Carlo quadrature. Our theoretical findings are confirmed in numerical experiments.

The covXtreme software provides functionality for estimation of marginal and conditional extreme value models, non-stationary with respect to covariates, and environmental design contours. Generalised Pareto (GP) marginal models of peaks over threshold are estimated, using a piecewise-constant representation for the variation of GP threshold and scale parameters on the (potentially multidimensional) covariate domain of interest. The conditional variation of one or more associated variates, given a large value of a single conditioning variate, is described using the conditional extremes model of Heffernan and Tawn (2004), the slope term of which is also assumed to vary in a piecewise constant manner with covariates. Optimal smoothness of marginal and conditional extreme value model parameters with respect to covariates is estimated using cross-validated roughness-penalised maximum likelihood estimation. Uncertainties in model parameter estimates due to marginal and conditional extreme value threshold choice, and sample size, are quantified using a bootstrap resampling scheme. Estimates of environmental contours using various schemes, including the direct sampling approach of Huseby et al. 2013, are calculated by simulation or numerical integration under fitted models. The software was developed in MATLAB for metocean applications, but is applicable generally to multivariate samples of peaks over threshold. The software can be downloaded from GitHub, with an accompanying user guide.

Audio-visual speech separation methods aim to integrate different modalities to generate high-quality separated speech, thereby enhancing the performance of downstream tasks such as speech recognition. Most existing state-of-the-art (SOTA) models operate in the time domain. However, their overly simplistic approach to modeling acoustic features often necessitates larger and more computationally intensive models in order to achieve SOTA performance. In this paper, we present a novel time-frequency domain audio-visual speech separation method: Recurrent Time-Frequency Separation Network (RTFS-Net), which applies its algorithms on the complex time-frequency bins yielded by the Short-Time Fourier Transform. We model and capture the time and frequency dimensions of the audio independently using a multi-layered RNN along each dimension. Furthermore, we introduce a unique attention-based fusion technique for the efficient integration of audio and visual information, and a new mask separation approach that takes advantage of the intrinsic spectral nature of the acoustic features for a clearer separation. RTFS-Net outperforms the previous SOTA method using only 10% of the parameters and 18% of the MACs. This is the first time-frequency domain audio-visual speech separation method to outperform all contemporary time-domain counterparts.

The vast majority of approaches to speaker anonymization involve the extraction of fundamental frequency estimates, linguistic features and a speaker embedding which is perturbed to obfuscate the speaker identity before an anonymized speech waveform is resynthesized using a vocoder. Recent work has shown that x-vector transformations are difficult to control consistently: other sources of speaker information contained within fundamental frequency and linguistic features are re-entangled upon vocoding, meaning that anonymized speech signals still contain speaker information. We propose an approach based upon neural audio codecs (NACs), which are known to generate high-quality synthetic speech when combined with language models. NACs use quantized codes, which are known to effectively bottleneck speaker-related information: we demonstrate the potential of speaker anonymization systems based on NAC language modeling by applying the evaluation framework of the Voice Privacy Challenge 2022.

We investigate the frequentist guarantees of the variational sparse Gaussian process regression model. In the theoretical analysis, we focus on the variational approach with spectral features as inducing variables. We derive guarantees and limitations for the frequentist coverage of the resulting variational credible sets. We also derive sufficient and necessary lower bounds for the number of inducing variables required to achieve minimax posterior contraction rates. The implications of these results are demonstrated for different choices of priors. In a numerical analysis we consider a wider range of inducing variable methods and observe similar phenomena beyond the scope of our theoretical findings.

We introduce the modified planar rotator method (MPRS), a physically inspired machine learning method for spatial/temporal regression. MPRS is a non-parametric model which incorporates spatial or temporal correlations via short-range, distance-dependent ``interactions'' without assuming a specific form for the underlying probability distribution. Predictions are obtained by means of a fully autonomous learning algorithm which employs equilibrium conditional Monte Carlo simulations. MPRS is able to handle scattered data and arbitrary spatial dimensions. We report tests on various synthetic and real-word data in one, two and three dimensions which demonstrate that the MPRS prediction performance (without parameter tuning) is competitive with standard interpolation methods such as ordinary kriging and inverse distance weighting. In particular, MPRS is a particularly effective gap-filling method for rough and non-Gaussian data (e.g., daily precipitation time series). MPRS shows superior computational efficiency and scalability for large samples. Massive data sets involving millions of nodes can be processed in a few seconds on a standard personal computer.

In this paper we propose and analyze a virtual element method for the two dimensional non-symmetric diffusion-convection eigenvalue problem in order to derive a priori and a posteriori error estimates. Under the classic assumptions of the meshes, and with the aid of the classic theory of compact operators, we prove error estimates for the eigenvalues and eigenfunctions. Also, we develop an a posteriori error estimator which, in one hand, results to be reliable and on the other, with standard bubble functions arguments, also results to be efficient. We test our method on domains where the complex eigenfunctions are not sufficiently regular, in order to assess the performance of the estimator that we compare with the uniform refinement given by the a priori analysis

Reinforcement learning(RL) algorithms face the challenge of limited data efficiency, particularly when dealing with high-dimensional state spaces and large-scale problems. Most of RL methods often rely solely on state transition information within the same episode when updating the agent's Critic, which can lead to low data efficiency and sub-optimal training time consumption. Inspired by human-like analogical reasoning abilities, we introduce a novel mesh information propagation mechanism, termed the 'Imagination Mechanism (IM)', designed to significantly enhance the data efficiency of RL algorithms. Specifically, IM enables information generated by a single sample to be effectively broadcasted to different states across episodes, instead of simply transmitting in the same episode. This capability enhances the model's comprehension of state interdependencies and facilitates more efficient learning of limited sample information. To promote versatility, we extend the IM to function as a plug-and-play module that can be seamlessly and fluidly integrated into other widely adopted RL algorithms. Our experiments demonstrate that IM consistently boosts four mainstream SOTA RL algorithms, such as SAC, PPO, DDPG, and DQN, by a considerable margin, ultimately leading to superior performance than before across various tasks. For access to our code and data, please visit //github.com/OuAzusaKou/imagination_mechanism

Contemporary practices such as InnerSource and DevOps promote software reuse. This study investigates the implications of using contemporary practices on software reuse. In particular, we investigate the costs, benefits, challenges, and potential improvements in contemporary reuse at Ericsson. We performed the study in two phases: a) the initial data collection based on a combination of data collection methods (e.g., interviews, discussions, company portals), and b) a follow-up group discussion after a year to understand the status of the challenges and improvements identified in the first phase. Our results indicate that developing reusable assets resulted in upfront costs, such as additional effort in ensuring compliance. Furthermore, development with reuse also resulted in additional effort, for example, in integrating and understanding reusable assets. Ericsson perceived the additional effort as an investment resulting in long-term benefits such as improved quality, productivity, customer experience, and way of working. Ericsson's main challenge was increased pressure on the producers of reusable assets, which was mitigated by scaling the InnerSource adoption. InnerSource success is evident from the increase in the contributions to reusable assets. In addition, Ericsson implemented measures such as automating the compliance check, which enhanced the maturity of reusable assets and resulted in increased reuse.

北京阿比特科技有限公司