Large language models (LLMs) have made significant strides in various tasks, yet they often struggle with complex reasoning and exhibit poor performance in scenarios where knowledge traceability, timeliness, and accuracy are crucial. To address these limitations, we present Think-on-Graph (ToG), a novel framework that leverages knowledge graphs to enhance LLMs' ability for deep and responsible reasoning. By employing ToG, we can identify entities relevant to a given question and conduct exploration and reasoning to retrieve related triples from an external knowledge database. This iterative procedure generates multiple reasoning pathways consisting of sequentially connected triplets until sufficient information is gathered to answer the question or the maximum depth is reached. Through experiments on complex multi-hop reasoning question-answering tasks, we demonstrate that ToG outperforms existing methods, effectively addressing the aforementioned limitations of LLMs without incurring additional training costs.
Large language models (LLMs) have achieved remarkable success in NLP and multimodal tasks. Despite these successes, their development faces two main challenges: (i) high computational cost; and (ii) difficulty in conducting fair and objective evaluations. LLMs are prohibitively expensive, making it feasible for only a few major players to undertake their training, thereby constraining both research and application opportunities. This underscores the importance of cost-effective LLM training. In this paper, we utilize a growth strategy to significantly reduce LLM training cost. We demonstrate that an LLM with 101B parameters and 0.31TB tokens can be trained on a $100K budget. We also adopt a systematic evaluation paradigm for the IQ evaluation of LLMs, in complement to existing evaluations that focus more on knowledge-oriented abilities. We introduce our benchmark including evaluations on important aspects of intelligence including symbolic mapping, itrule understanding, pattern mining, and anti-interference. Such evaluations minimize the potential impact of memorization. Experimental results show that our model FLM-101B, trained with a budget of $100K, achieves comparable performance to powerful and well-known models, eg GPT-3 and GLM-130B, especially in the IQ benchmark evaluations with contexts unseen in training data. The checkpoint of FLM-101B will be open-sourced at //huggingface.co/CofeAI/FLM-101B.
Large language models, particularly those akin to the rapidly progressing GPT series, are gaining traction for their expansive influence. While there is keen interest in their applicability within medical domains such as psychology, tangible explorations on real-world data remain scant. Concurrently, users on social media platforms are increasingly vocalizing personal sentiments; under specific thematic umbrellas, these sentiments often manifest as negative emotions, sometimes escalating to suicidal inclinations. Timely discernment of such cognitive distortions and suicidal risks is crucial to effectively intervene and potentially avert dire circumstances. Our study ventured into this realm by experimenting on two pivotal tasks: suicidal risk and cognitive distortion identification on Chinese social media platforms. Using supervised learning as a baseline, we examined and contrasted the efficacy of large language models via three distinct strategies: zero-shot, few-shot, and fine-tuning. Our findings revealed a discernible performance gap between the large language models and traditional supervised learning approaches, primarily attributed to the models' inability to fully grasp subtle categories. Notably, while GPT-4 outperforms its counterparts in multiple scenarios, GPT-3.5 shows significant enhancement in suicide risk classification after fine-tuning. To our knowledge, this investigation stands as the maiden attempt at gauging large language models on Chinese social media tasks. This study underscores the forward-looking and transformative implications of using large language models in the field of psychology. It lays the groundwork for future applications in psychological research and practice.
Large language models (LLMs), such as ChatGPT and GPT-4, are versatile and can solve different tasks due to their emergent ability and generalizability. However, LLMs sometimes lack domain-specific knowledge to perform tasks, which would also cause hallucination during inference. In some previous works, additional modules like graph neural networks (GNNs) are trained on retrieved knowledge from external knowledge bases, aiming to mitigate the problem of lacking domain-specific knowledge. However, incorporating additional modules: 1) would need retraining additional modules when encountering novel domains; 2) would become a bottleneck since LLMs' strong abilities are not fully utilized for retrieval. In this paper, we propose a paradigm, termed Knowledge Solver (KSL), to teach LLMs to search for essential knowledge from external knowledge bases by harnessing their own strong generalizability. Specifically, we design a simple yet effective prompt to transform retrieval into a multi-hop decision sequence, which empowers LLMs with searching knowledge ability in zero-shot manner. Additionally, KSL is able to provide complete retrieval paths and therefore increase explainability of LLMs' reasoning processes. We conduct experiments on three datasets: CommonsenseQA, OpenbookQA, and MedQA-USMLE, and found that our approach improves LLM baseline performance by a relatively large margin.
With their recent development, large language models (LLMs) have been found to exhibit a certain level of Theory of Mind (ToM), a complex cognitive capacity that is related to our conscious mind and that allows us to infer another's beliefs and perspective. While human ToM capabilities are believed to derive from the neural activity of a broadly interconnected brain network, including that of dorsal medial prefrontal cortex (dmPFC) neurons, the precise processes underlying LLM's capacity for ToM or their similarities with that of humans remains largely unknown. In this study, we drew inspiration from the dmPFC neurons subserving human ToM and employed a similar methodology to examine whether LLMs exhibit comparable characteristics. Surprisingly, our analysis revealed a striking resemblance between the two, as hidden embeddings (artificial neurons) within LLMs started to exhibit significant responsiveness to either true- or false-belief trials, suggesting their ability to represent another's perspective. These artificial embedding responses were closely correlated with the LLMs' performance during the ToM tasks, a property that was dependent on the size of the models. Further, the other's beliefs could be accurately decoded using the entire embeddings, indicating the presence of the embeddings' ToM capability at the population level. Together, our findings revealed an emergent property of LLMs' embeddings that modified their activities in response to ToM features, offering initial evidence of a parallel between the artificial model and neurons in the human brain.
Existing large language models (LLMs) are known for generating "hallucinated" content, namely a fabricated text of plausibly looking, yet unfounded, facts. To identify when these hallucination scenarios occur, we examine the properties of the generated text in the embedding space. Specifically, we draw inspiration from the dynamic mode decomposition (DMD) tool in analyzing the pattern evolution of text embeddings across sentences. We empirically demonstrate how the spectrum of sentence embeddings over paragraphs is constantly low-rank for the generated text, unlike that of the ground-truth text. Importantly, we find that evaluation cases having LLM hallucinations correspond to ground-truth embedding patterns with a higher number of modes being poorly approximated by the few modes associated with LLM embedding patterns. In analogy to near-field electromagnetic evanescent waves, the embedding DMD eigenmodes of the generated text with hallucinations vanishes quickly across sentences as opposed to those of the ground-truth text. This suggests that the hallucinations result from both the generation techniques and the underlying representation.
While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.
Deep Learning (DL) frameworks are now widely used, simplifying the creation of complex models as well as their integration to various applications even to non DL experts. However, like any other programs, they are prone to bugs. This paper deals with the subcategory of bugs named silent bugs: they lead to wrong behavior but they do not cause system crashes or hangs, nor show an error message to the user. Such bugs are even more dangerous in DL applications and frameworks due to the "black-box" and stochastic nature of the systems (the end user can not understand how the model makes decisions). This paper presents the first empirical study of Keras and TensorFlow silent bugs, and their impact on users' programs. We extracted closed issues related to Keras from the TensorFlow GitHub repository. Out of the 1,168 issues that we gathered, 77 were reproducible silent bugs affecting users' programs. We categorized the bugs based on the effects on the users' programs and the components where the issues occurred, using information from the issue reports. We then derived a threat level for each of the issues, based on the impact they had on the users' programs. To assess the relevance of identified categories and the impact scale, we conducted an online survey with 103 DL developers. The participants generally agreed with the significant impact of silent bugs in DL libraries and acknowledged our findings (i.e., categories of silent bugs and the proposed impact scale). Finally, leveraging our analysis, we provide a set of guidelines to facilitate safeguarding against such bugs in DL frameworks.
Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. The great promise of LLMs as general task solvers motivated people to extend their functionality largely beyond just a ``chatbot'', and use it as an assistant or even replacement for domain experts and tools in specific domains such as healthcare, finance, and education. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). To fill such a gap, explosively-increase research, and practices have been conducted in very recent years on the domain specialization of LLMs, which, however, calls for a comprehensive and systematic review to better summarizes and guide this promising domain. In this survey paper, first, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. We also present a comprehensive taxonomy of critical application domains that can benefit from specialized LLMs, discussing their practical significance and open challenges. Furthermore, we offer insights into the current research status and future trends in this area.
Transformer-based pretrained language models (T-PTLMs) have achieved great success in almost every NLP task. The evolution of these models started with GPT and BERT. These models are built on the top of transformers, self-supervised learning and transfer learning. Transformed-based PTLMs learn universal language representations from large volumes of text data using self-supervised learning and transfer this knowledge to downstream tasks. These models provide good background knowledge to downstream tasks which avoids training of downstream models from scratch. In this comprehensive survey paper, we initially give a brief overview of self-supervised learning. Next, we explain various core concepts like pretraining, pretraining methods, pretraining tasks, embeddings and downstream adaptation methods. Next, we present a new taxonomy of T-PTLMs and then give brief overview of various benchmarks including both intrinsic and extrinsic. We present a summary of various useful libraries to work with T-PTLMs. Finally, we highlight some of the future research directions which will further improve these models. We strongly believe that this comprehensive survey paper will serve as a good reference to learn the core concepts as well as to stay updated with the recent happenings in T-PTLMs.
The problem of answering questions using knowledge from pre-trained language models (LMs) and knowledge graphs (KGs) presents two challenges: given a QA context (question and answer choice), methods need to (i) identify relevant knowledge from large KGs, and (ii) perform joint reasoning over the QA context and KG. In this work, we propose a new model, QA-GNN, which addresses the above challenges through two key innovations: (i) relevance scoring, where we use LMs to estimate the importance of KG nodes relative to the given QA context, and (ii) joint reasoning, where we connect the QA context and KG to form a joint graph, and mutually update their representations through graph neural networks. We evaluate QA-GNN on the CommonsenseQA and OpenBookQA datasets, and show its improvement over existing LM and LM+KG models, as well as its capability to perform interpretable and structured reasoning, e.g., correctly handling negation in questions.