亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We develop a Bayesian graphical modeling framework for functional data for correlated multivariate random variables observed over a continuous domain. Our method leads to graphical Markov models for functional data which allows the graphs to vary over the functional domain. The model involves estimation of graphical models that evolve functionally in a nonparametric fashion while accounting for within-functional correlations and borrowing strength across functional positions so contiguous locations are encouraged but not forced to have similar graph structure and edge strength. We utilize a strategy that combines nonparametric basis function modeling with modified Bayesian graphical regularization techniques, which induces a new class of hypoexponential normal scale mixture distributions that not only leads to adaptively shrunken estimators of the conditional cross-covariance but also facilitates a thorough theoretical investigation of the shrinkage properties. Our approach scales up to large functional datasets collected on a fine grid. We show through simulations and real data analysis that the Bayesian functional graphical model can efficiently reconstruct the functionally-evolving graphical models by accounting for within-function correlations.

相關內容

《圖形模型》是國際公認的高評價的頂級期刊,專注于圖形模型的創建、幾何處理、動畫和可視化,以及它們在工程、科學、文化和娛樂方面的應用。GMOD為其讀者提供了經過徹底審查和精心挑選的論文,這些論文傳播令人興奮的創新,傳授嚴謹的理論基礎,提出健壯和有效的解決方案,或描述各種主題中的雄心勃勃的系統或應用程序。 官網地址:

Topic models provide a useful text-mining tool for learning, extracting and discovering latent structures in large text corpora. Although a plethora of methods have been proposed for topic modeling, a formal theoretical investigation on the statistical identifiability and accuracy of latent topic estimation is lacking in the literature. In this paper, we propose a maximum likelihood estimator (MLE) of latent topics based on a specific integrated likelihood, which is naturally connected to the concept of volume minimization in computational geometry. Theoretically, we introduce a new set of geometric conditions for topic model identifiability, which are weaker than conventional separability conditions relying on the existence of anchor words or pure topic documents. We conduct finite-sample error analysis for the proposed estimator and discuss the connection of our results with existing ones. We conclude with empirical studies on both simulated and real datasets.

Inference of directed relations given some unspecified interventions, that is, the target of each intervention is not known, is important yet challenging. For instance, it is of high interest to unravel the regulatory roles of genes with inherited genetic variants like single-nucleotide polymorphisms (SNPs), which can be unspecified interventions because of their regulatory function on some unknown genes. In this article, we test hypothesized directed relations with unspecified interventions. First, we derive conditions to yield an identifiable model. Unlike classical inference, hypothesis testing requires identifying ancestral relations and relevant interventions for each hypothesis-specific primary variable, referring to as causal discovery. Towards this end, we propose a peeling algorithm to establish a hierarchy of primary variables as nodes, starting with leaf nodes at the hierarchy's bottom, for which we derive a difference-of-convex (DC) algorithm for nonconvex minimization. Moreover, we prove that the peeling algorithm yields consistent causal discovery, and the DC algorithm is a low-order polynomial algorithm capable of finding a global minimizer almost surely under the data generating distribution. Second, we propose a modified likelihood ratio test, eliminating nuisance parameters to increase power. To enhance finite-sample performance, we integrate the modified likelihood ratio test with a data perturbation scheme by accounting for the uncertainty of identifying ancestral relations and relevant interventions. Also, we show that the distribution of a data-perturbation test statistic converges to the target distribution in high dimensions. Numerical examples demonstrate the utility and effectiveness of the proposed methods, including an application to infer gene regulatory networks.

We present a means of formulating and solving the well known structure-and-motion problem in computer vision with probabilistic graphical models. We model the unknown camera poses and 3D feature coordinates as well as the observed 2D projections as Gaussian random variables, using sigma point parameterizations to effectively linearize the nonlinear relationships between these variables. Those variables involved in every projection are grouped into a cluster, and we connect the clusters in a cluster graph. Loopy belief propagation is performed over this graph, in an iterative re-initialization and estimation procedure, and we find that our approach shows promise in both simulation and on real-world data. The PGM is easily extendable to include additional parameters or constraints.

The posterior over Bayesian neural network (BNN) parameters is extremely high-dimensional and non-convex. For computational reasons, researchers approximate this posterior using inexpensive mini-batch methods such as mean-field variational inference or stochastic-gradient Markov chain Monte Carlo (SGMCMC). To investigate foundational questions in Bayesian deep learning, we instead use full-batch Hamiltonian Monte Carlo (HMC) on modern architectures. We show that (1) BNNs can achieve significant performance gains over standard training and deep ensembles; (2) a single long HMC chain can provide a comparable representation of the posterior to multiple shorter chains; (3) in contrast to recent studies, we find posterior tempering is not needed for near-optimal performance, with little evidence for a "cold posterior" effect, which we show is largely an artifact of data augmentation; (4) BMA performance is robust to the choice of prior scale, and relatively similar for diagonal Gaussian, mixture of Gaussian, and logistic priors; (5) Bayesian neural networks show surprisingly poor generalization under domain shift; (6) while cheaper alternatives such as deep ensembles and SGMCMC methods can provide good generalization, they provide distinct predictive distributions from HMC. Notably, deep ensemble predictive distributions are similarly close to HMC as standard SGLD, and closer than standard variational inference.

In this paper, we propose Latent Relation Language Models (LRLMs), a class of language models that parameterizes the joint distribution over the words in a document and the entities that occur therein via knowledge graph relations. This model has a number of attractive properties: it not only improves language modeling performance, but is also able to annotate the posterior probability of entity spans for a given text through relations. Experiments demonstrate empirical improvements over both a word-based baseline language model and a previous approach that incorporates knowledge graph information. Qualitative analysis further demonstrates the proposed model's ability to learn to predict appropriate relations in context.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

The Variational Auto-Encoder (VAE) is one of the most used unsupervised machine learning models. But although the default choice of a Gaussian distribution for both the prior and posterior represents a mathematically convenient distribution often leading to competitive results, we show that this parameterization fails to model data with a latent hyperspherical structure. To address this issue we propose using a von Mises-Fisher (vMF) distribution instead, leading to a hyperspherical latent space. Through a series of experiments we show how such a hyperspherical VAE, or $\mathcal{S}$-VAE, is more suitable for capturing data with a hyperspherical latent structure, while outperforming a normal, $\mathcal{N}$-VAE, in low dimensions on other data types.

We consider the exploration-exploitation trade-off in reinforcement learning and we show that an agent imbued with a risk-seeking utility function is able to explore efficiently, as measured by regret. The parameter that controls how risk-seeking the agent is can be optimized exactly, or annealed according to a schedule. We call the resulting algorithm K-learning and show that the corresponding K-values are optimistic for the expected Q-values at each state-action pair. The K-values induce a natural Boltzmann exploration policy for which the `temperature' parameter is equal to the risk-seeking parameter. This policy achieves an expected regret bound of $\tilde O(L^{3/2} \sqrt{S A T})$, where $L$ is the time horizon, $S$ is the number of states, $A$ is the number of actions, and $T$ is the total number of elapsed time-steps. This bound is only a factor of $L$ larger than the established lower bound. K-learning can be interpreted as mirror descent in the policy space, and it is similar to other well-known methods in the literature, including Q-learning, soft-Q-learning, and maximum entropy policy gradient, and is closely related to optimism and count based exploration methods. K-learning is simple to implement, as it only requires adding a bonus to the reward at each state-action and then solving a Bellman equation. We conclude with a numerical example demonstrating that K-learning is competitive with other state-of-the-art algorithms in practice.

A fundamental computation for statistical inference and accurate decision-making is to compute the marginal probabilities or most probable states of task-relevant variables. Probabilistic graphical models can efficiently represent the structure of such complex data, but performing these inferences is generally difficult. Message-passing algorithms, such as belief propagation, are a natural way to disseminate evidence amongst correlated variables while exploiting the graph structure, but these algorithms can struggle when the conditional dependency graphs contain loops. Here we use Graph Neural Networks (GNNs) to learn a message-passing algorithm that solves these inference tasks. We first show that the architecture of GNNs is well-matched to inference tasks. We then demonstrate the efficacy of this inference approach by training GNNs on a collection of graphical models and showing that they substantially outperform belief propagation on loopy graphs. Our message-passing algorithms generalize out of the training set to larger graphs and graphs with different structure.

Discrete random structures are important tools in Bayesian nonparametrics and the resulting models have proven effective in density estimation, clustering, topic modeling and prediction, among others. In this paper, we consider nested processes and study the dependence structures they induce. Dependence ranges between homogeneity, corresponding to full exchangeability, and maximum heterogeneity, corresponding to (unconditional) independence across samples. The popular nested Dirichlet process is shown to degenerate to the fully exchangeable case when there are ties across samples at the observed or latent level. To overcome this drawback, inherent to nesting general discrete random measures, we introduce a novel class of latent nested processes. These are obtained by adding common and group-specific completely random measures and, then, normalising to yield dependent random probability measures. We provide results on the partition distributions induced by latent nested processes, and develop an Markov Chain Monte Carlo sampler for Bayesian inferences. A test for distributional homogeneity across groups is obtained as a by product. The results and their inferential implications are showcased on synthetic and real data.

北京阿比特科技有限公司