亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Behavioural metrics provide a quantitative refinement of classical two-valued behavioural equivalences on systems with quantitative data, such as metric or probabilistic transition systems. In analogy to the linear-time/branching-time spectrum of two-valued behavioural equivalences on transition systems, behavioural metrics vary in granularity. We provide a unifying treatment of spectra of behavioural metrics in the emerging framework of graded monads, working in coalgebraic generality, that is, parametrically in the system type. In the ensuing development of quantitative graded semantics, we introduce algebraic presentations of graded monads on the category of metric spaces. Moreover, we obtain a canonical generic notion of invariant real-valued modal logic, and provide criteria for such logics to be expressive in the sense that logical distance coincides with behavioural distance. We present positive examples based on this criterion, covering both known and new expressiveness results; in particular, we show that expressiveness holds essentially always for Eilenberg-Moore type trace semantics, and we obtain a new expressiveness result for trace semantics of fuzzy transition systems. As a negative result, we show that trace distance on probabilistic metric transition systems does not admit any characteristic real-valued modal logic, even in a more broadly understood sense.

相關內容

Letter-to-letter transducers are a standard formalism for modeling reactive systems. Often, two transducers that model similar systems differ locally from one another, by behaving similarly, up to permutations of the input and output letters within "rounds". In this work, we introduce and study notions of simulation by rounds and equivalence by rounds of transducers. In our setting, words are partitioned to consecutive subwords of a fixed length $k$, called rounds. Then, a transducer $\mathcal{T}_1$ is $k$-round simulated by transducer $\mathcal{T}_2$ if, intuitively, for every input word $x$, we can permute the letters within each round in $x$, such that the output of $\mathcal{T}_2$ on the permuted word is itself a permutation of the output of $\mathcal{T}_1$ on $x$. Finally, two transducers are $k$-round equivalent if they simulate each other. We solve two main decision problems, namely whether $\mathcal{T}_2$ $k$-round simulates $\mathcal{T}_1$ (1) when $k$ is given as input, and (2) for an existentially quantified $k$. We demonstrate the usefulness of the definitions by applying them to process symmetry: a setting in which a permutation in the identities of processes in a multi-process system naturally gives rise to two transducers, whose $k$-round equivalence corresponds to stability against such permutations.

We propose a unified class of generalized structural equation models (GSEMs) with data of mixed types in mediation analysis, including continuous, categorical, and count variables. Such models extend substantially the classical linear structural equation model to accommodate many data types arising from the application of mediation analysis. Invoking the hierarchical modeling approach, we specify GSEMs by a copula joint distribution of outcome variable, mediator and exposure variable, in which marginal distributions are built upon generalized linear models (GLMs) with confounding factors. We discuss the identifiability conditions for the causal mediation effects in the counterfactual paradigm as well as the issue of mediation leakage, and develop an asymptotically efficient profile maximum likelihood estimation and inference for two key mediation estimands, natural direct effect and natural indirect effect, in different scenarios of mixed data types. The proposed new methodology is illustrated by a motivating epidemiological study that aims to investigate whether the tempo of reaching infancy BMI peak (delay or on time), an important early life growth milestone, may mediate the association between prenatal exposure to phthalates and pubertal health outcomes.

We assume to be given structural equations over discrete variables inducing a directed acyclic graph, namely, a structural causal model, together with data about its internal nodes. The question we want to answer is how we can compute bounds for partially identifiable counterfactual queries from such an input. We start by giving a map from structural casual models to credal networks. This allows us to compute exact counterfactual bounds via algorithms for credal nets on a subclass of structural causal models. Exact computation is going to be inefficient in general given that, as we show, causal inference is NP-hard even on polytrees. We target then approximate bounds via a causal EM scheme. We evaluate their accuracy by providing credible intervals on the quality of the approximation; we show through a synthetic benchmark that the EM scheme delivers accurate results in a fair number of runs. In the course of the discussion, we also point out what seems to be a neglected limitation to the trending idea that counterfactual bounds can be computed without knowledge of the structural equations. We also present a real case study on palliative care to show how our algorithms can readily be used for practical purposes.

The virtual element method (VEM) allows discretization of elasticity and plasticity problems with polygons in 2D and polyhedrals in 3D. The polygons (and polyhedrals) can have an arbitrary number of sides and can be concave or convex. These features, among others, are attractive for meshing complex geometries. However, to the author's knowledge axisymmetric virtual elements have not appeared before in the literature. Hence, in this work a novel first order consistent axisymmetric virtual element method is applied to problems of elasticity and plasticity. The VEM specific implementation details and adjustments needed to solve axisymmetric simulations are presented. Representative benchmark problems including pressure vessels and circular plates are illustrated. Examples also show that problems of near incompressibility are solved successfully. Consequently, this research demonstrates that the axisymmetric VEM formulation successfully solves certain classes of solid mechanics problems. The work concludes with a discussion of results for the current formulation and future research directions.

A sharp, distribution free, non-asymptotic result is proved for the concentration of a random function around the mean function, when the randomization is generated by a finite sequence of independent data and the random functions satisfy uniform bounded variation assumptions. The specific motivation for the work comes from the need for inference on the distributional impacts of social policy intervention. However, the family of randomized functions that we study is broad enough to cover wide-ranging applications. For example, we provide a Kolmogorov-Smirnov like test for randomized functions that are almost surely Lipschitz continuous, and novel tools for inference with heterogeneous treatment effects. A Dvoretzky-Kiefer-Wolfowitz like inequality is also provided for the sum of almost surely monotone random functions, extending the famous non-asymptotic work of Massart for empirical cumulative distribution functions generated by i.i.d. data, to settings without micro-clusters proposed by Canay, Santos, and Shaikh. We illustrate the relevance of our theoretical results for applied work via empirical applications. Notably, the proof of our main concentration result relies on a novel stochastic rendition of the fundamental result of Debreu, generally dubbed the "gap lemma," that transforms discontinuous utility representations of preorders into continuous utility representations, and on an envelope theorem of an infinite dimensional optimisation problem that we carefully construct.

Large Language Models (LLMs) represent formidable tools for sequence modeling, boasting an innate capacity for general pattern recognition. Nevertheless, their broader spatial reasoning capabilities, especially applied to numerical trajectory data, remain insufficiently explored. In this paper, we investigate the out-of-the-box performance of ChatGPT-3.5, ChatGPT-4 and Llama 2 7B models when confronted with 3D robotic trajectory data from the CALVIN baseline and associated tasks, including 2D directional and shape labeling. Additionally, we introduce a novel prefix-based prompting mechanism, which yields a 33% improvement on the 3D trajectory data and an increase of up to 10% on SpartQA tasks over zero-shot prompting (with gains for other prompting types as well). The experimentation with 3D trajectory data offers an intriguing glimpse into the manner in which LLMs engage with numerical and spatial information, thus laying a solid foundation for the identification of target areas for future enhancements.

In the realm of interpretability and out-of-distribution generalisation, the identifiability of latent variable models has emerged as a captivating field of inquiry. In this work, we delve into the identifiability of Switching Dynamical Systems, taking an initial stride toward extending identifiability analysis to sequential latent variable models. We first prove the identifiability of Markov Switching Models, which commonly serve as the prior distribution for the continuous latent variables in Switching Dynamical Systems. We present identification conditions for first-order Markov dependency structures, whose transition distribution is parametrised via non-linear Gaussians. We then establish the identifiability of the latent variables and non-linear mappings in Switching Dynamical Systems up to affine transformations, by leveraging identifiability analysis techniques from identifiable deep latent variable models. We finally develop estimation algorithms for identifiable Switching Dynamical Systems. Throughout empirical studies, we demonstrate the practicality of identifiable Switching Dynamical Systems for segmenting high-dimensional time series such as videos, and showcase the use of identifiable Markov Switching Models for regime-dependent causal discovery in climate data.

Modeling the ratio of two dependent components as a function of covariates is a frequently pursued objective in observational research. Despite the high relevance of this topic in medical studies, where biomarker ratios are often used as surrogate endpoints for specific diseases, existing models are based on oversimplified assumptions, assuming e.g.\@ independence or strictly positive associations between the components. In this paper, we close this gap in the literature and propose a regression model where the marginal distributions of the two components are linked by Frank copula. A key feature of our model is that it allows for both positive and negative correlations between the components, with one of the model parameters being directly interpretable in terms of Kendall's rank correlation coefficient. We study our method theoretically, evaluate finite sample properties in a simulation study and demonstrate its efficacy in an application to diagnosis of Alzheimer's disease via ratios of amyloid-beta and total tau protein biomarkers.

Many important tasks of large-scale recommender systems can be naturally cast as testing multiple linear forms for noisy matrix completion. These problems, however, present unique challenges because of the subtle bias-and-variance tradeoff of and an intricate dependence among the estimated entries induced by the low-rank structure. In this paper, we develop a general approach to overcome these difficulties by introducing new statistics for individual tests with sharp asymptotics both marginally and jointly, and utilizing them to control the false discovery rate (FDR) via a data splitting and symmetric aggregation scheme. We show that valid FDR control can be achieved with guaranteed power under nearly optimal sample size requirements using the proposed methodology. Extensive numerical simulations and real data examples are also presented to further illustrate its practical merits.

Mixed linear regression (MLR) is a powerful model for characterizing nonlinear relationships by utilizing a mixture of linear regression sub-models. The identification of MLR is a fundamental problem, where most of the existing results focus on offline algorithms, rely on independent and identically distributed (i.i.d) data assumptions, and provide local convergence results only. This paper investigates the online identification and data clustering problems for two basic classes of MLRs, by introducing two corresponding new online identification algorithms based on the expectation-maximization (EM) principle. It is shown that both algorithms will converge globally without resorting to the traditional i.i.d data assumptions. The main challenge in our investigation lies in the fact that the gradient of the maximum likelihood function does not have a unique zero, and a key step in our analysis is to establish the stability of the corresponding differential equation in order to apply the celebrated Ljung's ODE method. It is also shown that the within-cluster error and the probability that the new data is categorized into the correct cluster are asymptotically the same as those in the case of known parameters. Finally, numerical simulations are provided to verify the effectiveness of our online algorithms.

北京阿比特科技有限公司