In aims to uncover insights into medical decision-making embedded within observational data from clinical settings, we present a novel application of Inverse Reinforcement Learning (IRL) that identifies suboptimal clinician actions based on the actions of their peers. This approach centers two stages of IRL with an intermediate step to prune trajectories displaying behavior that deviates significantly from the consensus. This enables us to effectively identify clinical priorities and values from ICU data containing both optimal and suboptimal clinician decisions. We observe that the benefits of removing suboptimal actions vary by disease and differentially impact certain demographic groups.
This paper explores the potential of recurrent neural networks (RNNs) and other subquadratic architectures as competitive alternatives to transformer-based models in low-resource language modeling scenarios. We utilize HGRN2 (Qin et al., 2024), a recently proposed RNN-based architecture, and comparatively evaluate its effectiveness against transformer-based baselines and other subquadratic architectures (LSTM, xLSTM, Mamba). Our experimental results show that BABYHGRN, our HGRN2 language model, outperforms transformer-based models in both the 10M and 100M word tracks of the challenge, as measured by their performance on the BLiMP, EWoK, GLUE and BEAR benchmarks. Further, we show the positive impact of knowledge distillation. Our findings challenge the prevailing focus on transformer architectures and indicate the viability of RNN-based models, particularly in resource-constrained environments.
This position paper investigates the potential of integrating insights from language impairment research and its clinical treatment to develop human-inspired learning strategies and evaluation frameworks for language models (LMs). We inspect the theoretical underpinnings underlying some influential linguistically motivated training approaches derived from neurolinguistics and, particularly, aphasiology, aimed at enhancing the recovery and generalization of linguistic skills in aphasia treatment, with a primary focus on those targeting the syntactic domain. We highlight how these insights can inform the design of rigorous assessments for LMs, specifically in their handling of complex syntactic phenomena, as well as their implications for developing human-like learning strategies, aligning with efforts to create more sustainable and cognitively plausible natural language processing (NLP) models.
The annual influenza outbreak leads to significant public health and economic burdens making it desirable to have prompt and accurate probabilistic forecasts of the disease spread. The United States Centers for Disease Control and Prevention (CDC) hosts annually a national flu forecasting competition which has led to the development of a variety of flu forecast modeling methods. Beginning in 2013, the target to be forecast was weekly percentage of patients with an influenza-like illness (ILI), but in 2021 the target was changed to weekly hospitalizations. Reliable hospitalization data has only been available since 2021, but ILI data has been available since 2010 and has been successfully forecast for several seasons. In this manuscript, we introduce a two component modeling framework for forecasting hospitalizations utilizing both hospitalization and ILI data. The first component is for modeling ILI data using a nonlinear Bayesian model. The second component is for modeling hospitalizations as a function of ILI. For hospitalization forecasts, ILI is first forecast then hospitalizations are forecast with ILI forecasts used as a predictor. In a simulation study, the hospitalization forecast model is assessed and two previously successful ILI forecast models are compared. Also assessed is the usefulness of including a systematic model discrepancy term in the ILI model. Forecasts of state and national hospitalizations for the 2023-24 flu season are made, and different modeling decisions are compared. We found that including a discrepancy component in the ILI model tends to improve forecasts during certain weeks of the year. We also found that other modeling decisions such as the exact nonlinear function to be used in the ILI model or the error distribution for hospitalization models may or may not be better than other decisions, depending on the season, location, or week of the forecast.
In clinical trials where long follow-up is required to measure the primary outcome of interest, there is substantial interest in using an accepted surrogate outcome that can be measured earlier in time or with less cost to estimate a treatment effect. For example, in clinical trials of chronic kidney disease (CKD), the effect of a treatment is often demonstrated on a surrogate outcome, the longitudinal trajectory of glomerular filtration rate (GFR). However, estimating the effect of a treatment on the GFR trajectory is complicated by the fact that GFR measurement can be terminated by the occurrence of a terminal event, such as death or kidney failure. Thus, to estimate this effect, one must consider both the longitudinal outcome of GFR, and the terminal event process. Available estimation methods either impose restrictive parametric assumptions with corresponding maximum likelihood estimation that is computationintensive or other assumptions not appropriate for the GFR setting. In this paper, we build a semiparametric framework to jointly model the longitudinal outcome and the terminal event, where the model for the longitudinal outcome is semiparametric, and the relationship between the longitudinal outcome and the terminal event is nonparametric. The proposed semiparametric joint model is flexible and can be extended to include nonlinear trajectory of the longitudinal outcome easily. An estimating equation based method is proposed to estimate the treatment effect on the slope of the longitudinal outcome (e.g., GFR slope). Theoretical properties of the proposed estimators are derived. Finite sample performance of the proposed method is evaluated through simulation studies. We illustrate the proposed method using data from the Reduction of Endpoints in NIDDM with the Angiotensin II Antagonist Losartan (RENAAL) trail to examine the effect of Losartan on GFR slope.
Anatomical abnormality detection and report generation of chest X-ray (CXR) are two essential tasks in clinical practice. The former aims at localizing and characterizing cardiopulmonary radiological findings in CXRs, while the latter summarizes the findings in a detailed report for further diagnosis and treatment. Existing methods often focused on either task separately, ignoring their correlation. This work proposes a co-evolutionary abnormality detection and report generation (CoE-DG) framework. The framework utilizes both fully labeled (with bounding box annotations and clinical reports) and weakly labeled (with reports only) data to achieve mutual promotion between the abnormality detection and report generation tasks. Specifically, we introduce a bi-directional information interaction strategy with generator-guided information propagation (GIP) and detector-guided information propagation (DIP). For semi-supervised abnormality detection, GIP takes the informative feature extracted by the generator as an auxiliary input to the detector and uses the generator's prediction to refine the detector's pseudo labels. We further propose an intra-image-modal self-adaptive non-maximum suppression module (SA-NMS). This module dynamically rectifies pseudo detection labels generated by the teacher detection model with high-confidence predictions by the student.Inversely, for report generation, DIP takes the abnormalities' categories and locations predicted by the detector as input and guidance for the generator to improve the generated reports.
Recent medical vision-language models (VLMs) have shown promise in 2D medical image interpretation. However extending them to 3D medical imaging has been challenging due to computational complexities and data scarcity. Although a few recent VLMs specified for 3D medical imaging have emerged, all are limited to learning volumetric representation of a 3D medical image as a set of sub-volumetric features. Such process introduces overly correlated representations along the z-axis that neglect slice-specific clinical details, particularly for 3D medical images where adjacent slices have low redundancy. To address this limitation, we introduce MS-VLM that mimic radiologists' workflow in 3D medical image interpretation. Specifically, radiologists analyze 3D medical images by examining individual slices sequentially and synthesizing information across slices and views. Likewise, MS-VLM leverages self-supervised 2D transformer encoders to learn a volumetric representation that capture inter-slice dependencies from a sequence of slice-specific features. Unbound by sub-volumetric patchification, MS-VLM is capable of obtaining useful volumetric representations from 3D medical images with any slice length and from multiple images acquired from different planes and phases. We evaluate MS-VLM on publicly available chest CT dataset CT-RATE and in-house rectal MRI dataset. In both scenarios, MS-VLM surpasses existing methods in radiology report generation, producing more coherent and clinically relevant reports. These findings highlight the potential of MS-VLM to advance 3D medical image interpretation and improve the robustness of medical VLMs.
While holding great promise for improving and facilitating healthcare, large language models (LLMs) struggle to produce up-to-date responses on evolving topics due to outdated knowledge or hallucination. Retrieval-augmented generation (RAG) is a pivotal innovation that improves the accuracy and relevance of LLM responses by integrating LLMs with a search engine and external sources of knowledge. However, the quality of RAG responses can be largely impacted by the rank and density of key information in the retrieval results, such as the "lost-in-the-middle" problem. In this work, we aim to improve the robustness and reliability of the RAG workflow in the medical domain. Specifically, we propose a map-reduce strategy, BriefContext, to combat the "lost-in-the-middle" issue without modifying the model weights. We demonstrated the advantage of the workflow with various LLM backbones and on multiple QA datasets. This method promises to improve the safety and reliability of LLMs deployed in healthcare domains.
Autonomous systems are soon to be ubiquitous, from manufacturing autonomy to agricultural field robots, and from health care assistants to the entertainment industry. The majority of these systems are developed with modular sub-components for decision-making, planning, and control that may be hand-engineered or learning-based. While these existing approaches have been shown to perform well under the situations they were specifically designed for, they can perform especially poorly in rare, out-of-distribution scenarios that will undoubtedly arise at test-time. The rise of foundation models trained on multiple tasks with impressively large datasets from a variety of fields has led researchers to believe that these models may provide common sense reasoning that existing planners are missing. Researchers posit that this common sense reasoning will bridge the gap between algorithm development and deployment to out-of-distribution tasks, like how humans adapt to unexpected scenarios. Large language models have already penetrated the robotics and autonomous systems domains as researchers are scrambling to showcase their potential use cases in deployment. While this application direction is very promising empirically, foundation models are known to hallucinate and generate decisions that may sound reasonable, but are in fact poor. We argue there is a need to step back and simultaneously design systems that can quantify the certainty of a model's decision, and detect when it may be hallucinating. In this work, we discuss the current use cases of foundation models for decision-making tasks, provide a general definition for hallucinations with examples, discuss existing approaches to hallucination detection and mitigation with a focus on decision problems, and explore areas for further research in this exciting field.
The recent advancements in artificial intelligence (AI) combined with the extensive amount of data generated by today's clinical systems, has led to the development of imaging AI solutions across the whole value chain of medical imaging, including image reconstruction, medical image segmentation, image-based diagnosis and treatment planning. Notwithstanding the successes and future potential of AI in medical imaging, many stakeholders are concerned of the potential risks and ethical implications of imaging AI solutions, which are perceived as complex, opaque, and difficult to comprehend, utilise, and trust in critical clinical applications. Despite these concerns and risks, there are currently no concrete guidelines and best practices for guiding future AI developments in medical imaging towards increased trust, safety and adoption. To bridge this gap, this paper introduces a careful selection of guiding principles drawn from the accumulated experiences, consensus, and best practices from five large European projects on AI in Health Imaging. These guiding principles are named FUTURE-AI and its building blocks consist of (i) Fairness, (ii) Universality, (iii) Traceability, (iv) Usability, (v) Robustness and (vi) Explainability. In a step-by-step approach, these guidelines are further translated into a framework of concrete recommendations for specifying, developing, evaluating, and deploying technically, clinically and ethically trustworthy AI solutions into clinical practice.
Small data challenges have emerged in many learning problems, since the success of deep neural networks often relies on the availability of a huge amount of labeled data that is expensive to collect. To address it, many efforts have been made on training complex models with small data in an unsupervised and semi-supervised fashion. In this paper, we will review the recent progresses on these two major categories of methods. A wide spectrum of small data models will be categorized in a big picture, where we will show how they interplay with each other to motivate explorations of new ideas. We will review the criteria of learning the transformation equivariant, disentangled, self-supervised and semi-supervised representations, which underpin the foundations of recent developments. Many instantiations of unsupervised and semi-supervised generative models have been developed on the basis of these criteria, greatly expanding the territory of existing autoencoders, generative adversarial nets (GANs) and other deep networks by exploring the distribution of unlabeled data for more powerful representations. While we focus on the unsupervised and semi-supervised methods, we will also provide a broader review of other emerging topics, from unsupervised and semi-supervised domain adaptation to the fundamental roles of transformation equivariance and invariance in training a wide spectrum of deep networks. It is impossible for us to write an exclusive encyclopedia to include all related works. Instead, we aim at exploring the main ideas, principles and methods in this area to reveal where we are heading on the journey towards addressing the small data challenges in this big data era.