亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Offline reinforcement learning (RL) aims to infer sequential decision policies using only offline datasets. This is a particularly difficult setup, especially when learning to achieve multiple different goals or outcomes under a given scenario with only sparse rewards. For offline learning of goal-conditioned policies via supervised learning, previous work has shown that an advantage weighted log-likelihood loss guarantees monotonic policy improvement. In this work we argue that, despite its benefits, this approach is still insufficient to fully address the distribution shift and multi-modality problems. The latter is particularly severe in long-horizon tasks where finding a unique and optimal policy that goes from a state to the desired goal is challenging as there may be multiple and potentially conflicting solutions. To tackle these challenges, we propose a complementary advantage-based weighting scheme that introduces an additional source of inductive bias: given a value-based partitioning of the state space, the contribution of actions expected to lead to target regions that are easier to reach, compared to the final goal, is further increased. Empirically, we demonstrate that the proposed approach, Dual-Advantage Weighted Offline Goal-conditioned RL (DAWOG), outperforms several competing offline algorithms in commonly used benchmarks. Analytically, we offer a guarantee that the learnt policy is never worse than the underlying behaviour policy.

相關內容

Alignment training is crucial for enabling large language models (LLMs) to cater to human intentions and preferences. It is typically performed based on two stages with different objectives: instruction-following alignment and human-preference alignment. However, aligning LLMs with these objectives in sequence suffers from an inherent problem: the objectives may conflict, and the LLMs cannot guarantee to simultaneously align with the instructions and human preferences well. To response to these, in this work, we propose a Hybrid Alignment Training (Hbat) approach, based on alternating alignment and modified elastic weight consolidation methods. The basic idea is to alternate between different objectives during alignment training, so that better collaboration can be achieved between the two alignment tasks.We experiment with Hbat on summarization and dialogue tasks. Experimental results show that the proposed \textsc{Hbat} can significantly outperform all baselines. Notably, Hbat yields consistent performance gains over the traditional two-stage alignment training when using both proximal policy optimization and direct preference optimization.

An open challenge in reinforcement learning (RL) is the effective deployment of a trained policy to new or slightly different situations as well as semantically-similar environments. We introduce Symmetry-Invariant Transformer (SiT), a scalable vision transformer (ViT) that leverages both local and global data patterns in a self-supervised manner to improve generalisation. Central to our approach is Graph Symmetric Attention, which refines the traditional self-attention mechanism to preserve graph symmetries, resulting in invariant and equivariant latent representations. We showcase SiT's superior generalization over ViTs on MiniGrid and Procgen RL benchmarks, and its sample efficiency on Atari 100k and CIFAR10.

Communication overhead is a known bottleneck in federated learning (FL). To address this, lossy compression is commonly used on the information communicated between the server and clients during training. In horizontal FL, where each client holds a subset of the samples, such communication-compressed training methods have recently seen significant progress. However, in their vertical FL counterparts, where each client holds a subset of the features, our understanding remains limited. To address this, we propose an error feedback compressed vertical federated learning (EFVFL) method to train split neural networks. In contrast with previous communication-compressed methods for vertical FL, EFVFL does not require a vanishing compression error for the gradient norm to converge to zero for smooth nonconvex problems. By leveraging error feedback, our method can achieve a $\mathcal{O}(1/T)$ convergence rate in the full-batch case, improving over the state-of-the-art $\mathcal{O}(1/\sqrt{T})$ rate under $\mathcal{O}(1/\sqrt{T})$ compression error, and matching the rate of uncompressed methods. Further, when the objective function satisfies the Polyak-{\L}ojasiewicz inequality, our method converges linearly. In addition to improving convergence rates, our method also supports the use of private labels. Numerical experiments show that EFVFL significantly improves over the prior art, confirming our theoretical results.

Unsupervised sentence representation learning aims to transform input sentences into fixed-length vectors enriched with intricate semantic information while obviating the reliance on labeled data. Recent strides within this domain have been significantly propelled by breakthroughs in contrastive learning and prompt engineering. Despite these advancements, the field has reached a plateau, leading some researchers to incorporate external components to enhance the quality of sentence embeddings. Such integration, though beneficial, complicates solutions and inflates demands for computational resources. In response to these challenges, this paper presents CoT-BERT, an innovative method that harnesses the progressive thinking of Chain-of-Thought reasoning to tap into the latent potential of pre-trained models like BERT. Additionally, we develop an advanced contrastive learning loss function and propose a novel template denoising strategy. Rigorous experimentation demonstrates that CoT-BERT surpasses a range of well-established baselines by relying exclusively on the intrinsic strengths of pre-trained models.

Subgraph federated learning (SFL) is a research methodology that has gained significant attention for its potential to handle distributed graph-structured data. In SFL, the local model comprises graph neural networks (GNNs) with a partial graph structure. However, some SFL models have overlooked the significance of missing cross-subgraph edges, which can lead to local GNNs being unable to message-pass global representations to other parties' GNNs. Moreover, existing SFL models require substantial labeled data, which limits their practical applications. To overcome these limitations, we present a novel SFL framework called FedMpa that aims to learn cross-subgraph node representations. FedMpa first trains a multilayer perceptron (MLP) model using a small amount of data and then propagates the federated feature to the local structures. To further improve the embedding representation of nodes with local subgraphs, we introduce the FedMpae method, which reconstructs the local graph structure with an innovation view that applies pooling operation to form super-nodes. Our extensive experiments on six graph datasets demonstrate that FedMpa is highly effective in node classification. Furthermore, our ablation experiments verify the effectiveness of FedMpa.

Numerous recent techniques for text style transfer characterize their approaches as variants of reinforcement learning and preference optimization. In this work, we consider the relationship between these approaches and a class of optimization approaches developed primarily for (non-neural) statistical machine translation, formerly known as 'tuning'. Inspired by these techniques from the past, we improve upon established preference optimization approaches, incorporating multiple iterations of exploration and optimization, and choosing contrastive examples by following a 'hope' vs 'fear' sampling strategy. Cognizant of the difference between machine translation and style transfer, however, we further tailor our framework with a new pseudo-parallel generation method and a dynamic weighted reward aggregation method to tackle the lack of parallel data and the need for a multi-objective reward. We evaluate our model on two commonly used text style transfer datasets. Through automatic and human evaluation results we show the effectiveness and the superiority of our model compared to state-of-the-art baselines.

Causal representation learning aims at identifying high-level causal variables from perceptual data. Most methods assume that all latent causal variables are captured in the high-dimensional observations. We instead consider a partially observed setting, in which each measurement only provides information about a subset of the underlying causal state. Prior work has studied this setting with multiple domains or views, each depending on a fixed subset of latents. Here, we focus on learning from unpaired observations from a dataset with an instance-dependent partial observability pattern. Our main contribution is to establish two identifiability results for this setting: one for linear mixing functions without parametric assumptions on the underlying causal model, and one for piecewise linear mixing functions with Gaussian latent causal variables. Based on these insights, we propose two methods for estimating the underlying causal variables by enforcing sparsity in the inferred representation. Experiments on different simulated datasets and established benchmarks highlight the effectiveness of our approach in recovering the ground-truth latents.

Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Representation learning on a knowledge graph (KG) is to embed entities and relations of a KG into low-dimensional continuous vector spaces. Early KG embedding methods only pay attention to structured information encoded in triples, which would cause limited performance due to the structure sparseness of KGs. Some recent attempts consider paths information to expand the structure of KGs but lack explainability in the process of obtaining the path representations. In this paper, we propose a novel Rule and Path-based Joint Embedding (RPJE) scheme, which takes full advantage of the explainability and accuracy of logic rules, the generalization of KG embedding as well as the supplementary semantic structure of paths. Specifically, logic rules of different lengths (the number of relations in rule body) in the form of Horn clauses are first mined from the KG and elaborately encoded for representation learning. Then, the rules of length 2 are applied to compose paths accurately while the rules of length 1 are explicitly employed to create semantic associations among relations and constrain relation embeddings. Besides, the confidence level of each rule is also considered in optimization to guarantee the availability of applying the rule to representation learning. Extensive experimental results illustrate that RPJE outperforms other state-of-the-art baselines on KG completion task, which also demonstrate the superiority of utilizing logic rules as well as paths for improving the accuracy and explainability of representation learning.

北京阿比特科技有限公司