Screening classifiers are increasingly used to identify qualified candidates in a variety of selection processes. In this context, it has been recently shown that, if a classifier is calibrated, one can identify the smallest set of candidates which contains, in expectation, a desired number of qualified candidates using a threshold decision rule. This lends support to focusing on calibration as the only requirement for screening classifiers. In this paper, we argue that screening policies that use calibrated classifiers may suffer from an understudied type of within-group discrimination -- they may discriminate against qualified members within demographic groups of interest. Further, we argue that this type of discrimination can be avoided if classifiers satisfy within-group monotonicity, a natural monotonicity property within each of the groups. Then, we introduce an efficient post-processing algorithm based on dynamic programming to minimally modify a given calibrated classifier so that its probability estimates satisfy within-group monotonicity. We validate our algorithm using US Census survey data and show that within-group monotonicity can be often achieved at a small cost in terms of prediction granularity and shortlist size.
Three asymptotic limits exist for the Euler equations at low Mach number - purely convective, purely acoustic, and mixed convective-acoustic. Standard collocated density-based numerical schemes for compressible flow are known to fail at low Mach number due to the incorrect asymptotic scaling of the artificial diffusion. Previous studies of this class of schemes have shown a variety of behaviours across the different limits and proposed guidelines for the design of low-Mach schemes. However, these studies have primarily focused on specific discretisations and/or only the convective limit. In this paper, we review the low-Mach behaviour using the modified equations - the continuous Euler equations augmented with artificial diffusion terms - which are representative of a wide range of schemes in this class. By considering both convective and acoustic effects, we show that three diffusion scalings naturally arise. Single- and multiple-scale asymptotic analysis of these scalings shows that many of the important low-Mach features of this class of schemes can be reproduced in a straightforward manner in the continuous setting. As an example, we show that many existing low-Mach Roe-type finite-volume schemes match one of these three scalings. Our analysis corroborates previous analysis of these schemes, and we are able to refine previous guidelines on the design of low-Mach schemes by including both convective and acoustic effects. Discrete analysis and numerical examples demonstrate the behaviour of minimal Roe-type schemes with each of the three scalings for convective, acoustic, and mixed flows.
Deep learning has seen rapid growth in recent years and achieved state-of-the-art performance in a wide range of applications. However, training models typically requires expensive and time-consuming collection of large quantities of labeled data. This is particularly true within the scope of medical imaging analysis (MIA), where data are limited and labels are expensive to be acquired. Thus, label-efficient deep learning methods are developed to make comprehensive use of the labeled data as well as the abundance of unlabeled and weak-labeled data. In this survey, we extensively investigated over 300 recent papers to provide a comprehensive overview of recent progress on label-efficient learning strategies in MIA. We first present the background of label-efficient learning and categorize the approaches into different schemes. Next, we examine the current state-of-the-art methods in detail through each scheme. Specifically, we provide an in-depth investigation, covering not only canonical semi-supervised, self-supervised, and multi-instance learning schemes, but also recently emerged active and annotation-efficient learning strategies. Moreover, as a comprehensive contribution to the field, this survey not only elucidates the commonalities and unique features of the surveyed methods but also presents a detailed analysis of the current challenges in the field and suggests potential avenues for future research.
Modern robotic platforms need a reliable localization system to operate daily beside humans. Simple pose estimation algorithms based on filtered wheel and inertial odometry often fail in the presence of abrupt kinematic changes and wheel slips. Moreover, despite the recent success of visual odometry, service and assistive robotic tasks often present challenging environmental conditions where visual-based solutions fail due to poor lighting or repetitive feature patterns. In this work, we propose an innovative online learning approach for wheel odometry correction, paving the way for a robust multi-source localization system. An efficient attention-based neural network architecture has been studied to combine precise performances with real-time inference. The proposed solution shows remarkable results compared to a standard neural network and filter-based odometry correction algorithms. Nonetheless, the online learning paradigm avoids the time-consuming data collection procedure and can be adopted on a generic robotic platform on-the-fly.
In this work we present a deep learning approach to conduct hypothesis-free, transcriptomics-based matching of drugs for diseases. Our proposed neural network architecture is trained on approved drug-disease indications, taking as input the relevant disease and drug differential gene expression profiles, and learns to identify novel indications. We assemble an evaluation dataset of disease-drug indications spanning 68 diseases and evaluate in silico our approach against the most widely used transcriptomics-based matching baselines, CMap and the Characteristic Direction. Our results show a more than 200% improvement over both baselines in terms of standard retrieval metrics. We further showcase our model's ability to capture different genes' expressions interactions among drugs and diseases. We provide our trained models, data and code to predict with them at //github.com/healx/dgem-nn-public.
Money laundering is a profound global problem. Nonetheless, there is little scientific literature on statistical and machine learning methods for anti-money laundering. In this paper, we focus on anti-money laundering in banks and provide an introduction and review of the literature. We propose a unifying terminology with two central elements: (i) client risk profiling and (ii) suspicious behavior flagging. We find that client risk profiling is characterized by diagnostics, i.e., efforts to find and explain risk factors. On the other hand, suspicious behavior flagging is characterized by non-disclosed features and hand-crafted risk indices. Finally, we discuss directions for future research. One major challenge is the need for more public data sets. This may potentially be addressed by synthetic data generation. Other possible research directions include semi-supervised and deep learning, interpretability, and fairness of the results.
Theory of Mind (ToM) is the ability to attribute mental states to others, the basis of human cognition. At present, there has been growing interest in the AI with cognitive abilities, for example in healthcare and the motoring industry. Beliefs, desires, and intentions are the early abilities of infants and the foundation of human cognitive ability, as well as for machine with ToM. In this paper, we review recent progress in machine ToM on beliefs, desires, and intentions. And we shall introduce the experiments, datasets and methods of machine ToM on these three aspects, summarize the development of different tasks and datasets in recent years, and compare well-behaved models in aspects of advantages, limitations and applicable conditions, hoping that this study can guide researchers to quickly keep up with latest trend in this field. Unlike other domains with a specific task and resolution framework, machine ToM lacks a unified instruction and a series of standard evaluation tasks, which make it difficult to formally compare the proposed models. We argue that, one method to address this difficulty is now to present a standard assessment criteria and dataset, better a large-scale dataset covered multiple aspects of ToM.
Long-tailed classification poses a challenge due to its heavy imbalance in class probabilities and tail-sensitivity risks with asymmetric misprediction costs. Recent attempts have used re-balancing loss and ensemble methods, but they are largely heuristic and depend heavily on empirical results, lacking theoretical explanation. Furthermore, existing methods overlook the decision loss, which characterizes different costs associated with tailed classes. This paper presents a general and principled framework from a Bayesian-decision-theory perspective, which unifies existing techniques including re-balancing and ensemble methods, and provides theoretical justifications for their effectiveness. From this perspective, we derive a novel objective based on the integrated risk and a Bayesian deep-ensemble approach to improve the accuracy of all classes, especially the "tail". Besides, our framework allows for task-adaptive decision loss which provides provably optimal decisions in varying task scenarios, along with the capability to quantify uncertainty. Finally, We conduct comprehensive experiments, including standard classification, tail-sensitive classification with a new False Head Rate metric, calibration, and ablation studies. Our framework significantly improves the current SOTA even on large-scale real-world datasets like ImageNet.
We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.
Deep neural networks have achieved remarkable success in computer vision tasks. Existing neural networks mainly operate in the spatial domain with fixed input sizes. For practical applications, images are usually large and have to be downsampled to the predetermined input size of neural networks. Even though the downsampling operations reduce computation and the required communication bandwidth, it removes both redundant and salient information obliviously, which results in accuracy degradation. Inspired by digital signal processing theories, we analyze the spectral bias from the frequency perspective and propose a learning-based frequency selection method to identify the trivial frequency components which can be removed without accuracy loss. The proposed method of learning in the frequency domain leverages identical structures of the well-known neural networks, such as ResNet-50, MobileNetV2, and Mask R-CNN, while accepting the frequency-domain information as the input. Experiment results show that learning in the frequency domain with static channel selection can achieve higher accuracy than the conventional spatial downsampling approach and meanwhile further reduce the input data size. Specifically for ImageNet classification with the same input size, the proposed method achieves 1.41% and 0.66% top-1 accuracy improvements on ResNet-50 and MobileNetV2, respectively. Even with half input size, the proposed method still improves the top-1 accuracy on ResNet-50 by 1%. In addition, we observe a 0.8% average precision improvement on Mask R-CNN for instance segmentation on the COCO dataset.
Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-of-the-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.