亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper explores how AI-owners can develop safeguards for AI-generated content by drawing from established codes of conduct and ethical standards in other content-creation industries. It delves into the current state of ethical awareness on Large Language Models (LLMs). By dissecting the mechanism of content generation by LLMs, four key areas (upstream/downstream and at user prompt/answer), where safeguards could be effectively applied, are identified. A comparative analysis of these four areas follows and includes an evaluation of the existing ethical safeguards in terms of cost, effectiveness, and alignment with established industry practices. The paper's key argument is that existing IT-related ethical codes, while adequate for traditional IT engineering, are inadequate for the challenges posed by LLM-based content generation. Drawing from established practices within journalism, we propose potential standards for businesses involved in distributing and selling LLM-generated content. Finally, potential conflicts of interest between dataset curation at upstream and ethical benchmarking downstream are highlighted to underscore the need for a broader evaluation beyond mere output. This study prompts a nuanced conversation around ethical implications in this rapidly evolving field of content generation.

相關內容

We approach two interconnected problems of quantum information processing in networks: Conference key agreement and entanglement distillation, both in the so-called source model where the given resource is a multipartite quantum state and the players interact over public classical channels to generate the desired correlation. The first problem is the distillation of a conference key when the source state is shared between a number of legal players and an eavesdropper; the eavesdropper, apart from starting off with this quantum side information, also observes the public communication between the players. The second is the distillation of Greenberger-Horne-Zeilinger (GHZ) states by means of local operations and classical communication (LOCC) from the given mixed state. These problem settings extend our previous paper [IEEE Trans. Inf. Theory 68(2):976-988, 2022], and we generalise its results: using a quantum version of the task of communication for omniscience, we derive novel lower bounds on the distillable conference key from any multipartite quantum state by means of non-interacting communication protocols. Secondly, we establish novel lower bounds on the yield of GHZ states from multipartite mixed states. Namely, we present two methods to produce bipartite entanglement between sufficiently many nodes so as to produce GHZ states. Next, we show that the conference key agreement protocol can be made coherent under certain conditions, enabling the direct generation of multipartite GHZ states.

We present SEIF, a methodology that combines static analysis with symbolic execution to verify and explicate information flow paths in a hardware design. SEIF begins with a statically built model of the information flow through a design and uses guided symbolic execution to recognize and eliminate non-flows with high precision or to find corresponding paths through the design state for true flows. We evaluate SEIF on two open-source CPUs, an AES core, and the AKER access control module. SEIF can exhaustively explore 10-12 clock cycles deep in 4-6 seconds on average, and can automatically account for 86-90% of the paths in the statically built model. Additionally, SEIF can be used to find multiple violating paths for security properties, providing a new angle for security verification.

We propose novel methods for change-point testing for nonparametric estimators of expected shortfall and related risk measures in weakly dependent time series. We can detect general multiple structural changes in the tails of marginal distributions of time series under general assumptions. Self-normalization allows us to avoid the issues of standard error estimation. The theoretical foundations for our methods are functional central limit theorems, which we develop under weak assumptions. An empirical study of S&P 500 and US Treasury bond returns illustrates the practical use of our methods in detecting and quantifying market instability via the tails of financial time series.

This paper investigates visual media shared by US national politicians on Twitter, how a politician's variety of image types shared reflects their political position, and identifies a hazard in using standard methods for image characterization in this context. While past work has yielded valuable results on politicians' use of imagery in social media, that work has focused primarily on photographic media, which may be insufficient given the variety of visual media shared in such spaces (e.g., infographics, illustrations, or memes). Leveraging multiple popular, pre-trained, deep-learning models to characterize politicians' visuals, this work uses clustering to identify eight types of visual media shared on Twitter, several of which are not photographic in nature. Results show individual politicians share a variety of these types, and the distributions of their imagery across these clusters is correlated with their overall ideological position -- e.g., liberal politicians appear to share a larger proportion of infographic-style images, and conservative politicians appear to share more patriotic imagery. Manual assessment, however, reveals that these image-characterization models often group visually similar images with different semantic meaning into the same clusters, which has implications for how researchers interpret clusters in this space and cluster-based correlations with political ideology. In particular, collapsing semantic meaning in these pre-trained models may drive null findings on certain clusters of images rather than politicians across the ideological spectrum sharing common types of imagery. We end this paper with a set of researcher recommendations to prevent such issues.

As a crucial extension of entity alignment (EA), multi-modal entity alignment (MMEA) aims to identify identical entities across disparate knowledge graphs (KGs) by exploiting associated visual information. However, existing MMEA approaches primarily concentrate on the fusion paradigm of multi-modal entity features, while neglecting the challenges presented by the pervasive phenomenon of missing and intrinsic ambiguity of visual images. In this paper, we present a further analysis of visual modality incompleteness, benchmarking latest MMEA models on our proposed dataset MMEA-UMVM, where the types of alignment KGs covering bilingual and monolingual, with standard (non-iterative) and iterative training paradigms to evaluate the model performance. Our research indicates that, in the face of modality incompleteness, models succumb to overfitting the modality noise, and exhibit performance oscillations or declines at high rates of missing modality. This proves that the inclusion of additional multi-modal data can sometimes adversely affect EA. To address these challenges, we introduce UMAEA , a robust multi-modal entity alignment approach designed to tackle uncertainly missing and ambiguous visual modalities. It consistently achieves SOTA performance across all 97 benchmark splits, significantly surpassing existing baselines with limited parameters and time consumption, while effectively alleviating the identified limitations of other models. Our code and benchmark data are available at //github.com/zjukg/UMAEA.

Partially-supervised instance segmentation is a task which requests segmenting objects from novel unseen categories via learning on limited seen categories with annotated masks thus eliminating demands of heavy annotation burden. The key to addressing this task is to build an effective class-agnostic mask segmentation model. Unlike previous methods that learn such models only on seen categories, in this paper, we propose a new method, named ContrastMask, which learns a mask segmentation model on both seen and unseen categories under a unified pixel-level contrastive learning framework. In this framework, annotated masks of seen categories and pseudo masks of unseen categories serve as a prior for contrastive learning, where features from the mask regions (foreground) are pulled together, and are contrasted against those from the background, and vice versa. Through this framework, feature discrimination between foreground and background is largely improved, facilitating learning of the class-agnostic mask segmentation model. Exhaustive experiments on the COCO dataset demonstrate the superiority of our method, which outperforms previous state-of-the-arts.

Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.

北京阿比特科技有限公司