Managers, employers, policymakers, and others often seek to understand whether decisions are biased against certain groups. One popular analytic strategy is to estimate disparities after adjusting for observed covariates, typically with a regression model. This approach, however, suffers from two key statistical challenges. First, omitted-variable bias can skew results if the model does not adjust for all relevant factors; second, and conversely, included-variable bias -- a lesser-known phenomenon -- can skew results if the set of covariates includes irrelevant factors. Here we introduce a new, three-step statistical method, which we call risk-adjusted regression, to address both concerns in settings where decision makers have clearly measurable objectives. In the first step, we use all available covariates to estimate the value, or inversely, the risk, of taking a certain action, such as approving a loan application or hiring a job candidate. Second, we measure disparities in decisions after adjusting for these risk estimates alone, mitigating the problem of included-variable bias. Finally, in the third step, we assess the sensitivity of results to potential mismeasurement of risk, addressing concerns about omitted-variable bias. To do so, we develop a novel, non-parametric sensitivity analysis that yields tight bounds on the true disparity in terms of the average gap between true and estimated risk -- a single interpretable parameter that facilitates credible estimates. We demonstrate this approach on a detailed dataset of 2.2 million police stops of pedestrians in New York City, and show that traditional statistical tests of discrimination can substantially underestimate the magnitude of disparities.
Hyper-redundant Robotic Manipulators (HRMs) offer great dexterity and flexibility of operation, but solving Inverse Kinematics (IK) is challenging. In this work, we introduce VO-FABRIK, an algorithm combining Forward and Backward Reaching Inverse Kinematics (FABRIK) for repeatable deterministic IK computation, and an approach inspired from velocity obstacles to perform path planning under collision and joint limits constraints. We show preliminary results on an industrial HRM with 19 actuated joints. Our algorithm achieves good performance where a state-of-the-art IK solver fails.
When deploying neural networks in real-life situations, the size and computational effort are often the limiting factors. This is especially true in environments where big, expensive hardware is not affordable, like in embedded medical devices, where budgets are often tight. State-of-the-art proposed multiple different lightweight solutions for such use cases, mostly by changing the base model architecture, not taking the input and output resolution into consideration. In this paper, we propose our architecture that takes advantage of the fact that in hardware-limited environments, we often refrain from using the highest available input resolutions to guarantee a higher throughput. Although using lower-resolution input leads to a significant reduction in computing and memory requirements, it may also incur reduced prediction quality. Our architecture addresses this problem by exploiting the fact that we can still utilize high-resolution ground-truths in training. The proposed model inputs lower-resolution images and high-resolution ground truths, which can improve the prediction quality by 5.5% while adding less than 200 parameters to the model. %reducing the frames per second only from 25 to 20. We conduct an extensive analysis to illustrate that our architecture enhances existing state-of-the-art frameworks for lightweight semantic segmentation of cancer in MRI images. We also tested the deployment speed of state-of-the-art lightweight networks and our architecture on Nvidia's Jetson Nano to emulate deployment in resource-constrained embedded scenarios.
The disposal and recycling of electronic waste (e-waste) is a global challenge. The disassembly of components is a crucial step towards an efficient recycling process, avoiding the destructive methods. Although most disassembly work is still done manually due to the diversity and complexity of components, there is a growing interest in developing automated methods to improve efficiency and reduce labor costs. This study aims to robotize the desoldering process and extracting components from printed circuit boards (PCBs), with the goal of automating the process as much as possible. The proposed strategy consists of several phases, including the controlled contact of the robotic tool with the PCB components. A specific tool was developed to apply a controlled force against the PCB component, removing it from the board. The results demonstrate that it is feasible to remove the PCB components with a high success rate (approximately 100% for the bigger PCB components).
In recent months, the social impact of Artificial Intelligence (AI) has gained considerable public interest, driven by the emergence of Generative AI models, ChatGPT in particular. The rapid development of these models has sparked heated discussions regarding their benefits, limitations, and associated risks. Generative models hold immense promise across multiple domains, such as healthcare, finance, and education, to cite a few, presenting diverse practical applications. Nevertheless, concerns about potential adverse effects have elicited divergent perspectives, ranging from privacy risks to escalating social inequality. This paper adopts a methodology to delve into the societal implications of Generative AI tools, focusing primarily on the case of ChatGPT. It evaluates the potential impact on several social sectors and illustrates the findings of a comprehensive literature review of both positive and negative effects, emerging trends, and areas of opportunity of Generative AI models. This analysis aims to facilitate an in-depth discussion by providing insights that can inspire policy, regulation, and responsible development practices to foster a human-centered AI.
Compositional Natural Language Inference has been explored to assess the true abilities of neural models to perform NLI. Yet, current evaluations assume models to have full access to all primitive inferences in advance, in contrast to humans that continuously acquire inference knowledge. In this paper, we introduce the Continual Compositional Generalization in Inference (C2Gen NLI) challenge, where a model continuously acquires knowledge of constituting primitive inference tasks as a basis for compositional inferences. We explore how continual learning affects compositional generalization in NLI, by designing a continual learning setup for compositional NLI inference tasks. Our experiments demonstrate that models fail to compositionally generalize in a continual scenario. To address this problem, we first benchmark various continual learning algorithms and verify their efficacy. We then further analyze C2Gen, focusing on how to order primitives and compositional inference types and examining correlations between subtasks. Our analyses show that by learning subtasks continuously while observing their dependencies and increasing degrees of difficulty, continual learning can enhance composition generalization ability.
Big models have achieved revolutionary breakthroughs in the field of AI, but they might also pose potential concerns. Addressing such concerns, alignment technologies were introduced to make these models conform to human preferences and values. Despite considerable advancements in the past year, various challenges lie in establishing the optimal alignment strategy, such as data cost and scalable oversight, and how to align remains an open question. In this survey paper, we comprehensively investigate value alignment approaches. We first unpack the historical context of alignment tracing back to the 1920s (where it comes from), then delve into the mathematical essence of alignment (what it is), shedding light on the inherent challenges. Following this foundation, we provide a detailed examination of existing alignment methods, which fall into three categories: Reinforcement Learning, Supervised Fine-Tuning, and In-context Learning, and demonstrate their intrinsic connections, strengths, and limitations, helping readers better understand this research area. In addition, two emerging topics, personal alignment, and multimodal alignment, are also discussed as novel frontiers in this field. Looking forward, we discuss potential alignment paradigms and how they could handle remaining challenges, prospecting where future alignment will go.
We study the elective surgery planning problem in a hospital with operation rooms shared by elective and emergency patients. This problem can be split in two distinct phases. First, a subset of patients to be operated in the next planning period has to be selected, and the selected patients have to be assigned to a block and a tentative starting time. Then, in the online phase of the problem, a policy decides how to insert the emergency patients in the schedule and may cancel planned surgeries. The overall goal is to minimize the expectation of a cost function representing the assignment of patient to blocks, case cancellations, overtime, waiting time and idle time. We model the offline problem by a two-stage stochastic program, and show that the second-stage costs can be replaced by a convex piecewise linear surrogate model that can be computed in a preprocessing step. This results in a mixed integer program which can be solved in a short amount of time, even for very large instances of the problem. We also describe a greedy policy for the online phase of the problem, and analyze the performance of our approach by comparing it to either heuristic methods or approaches relying on sampling average approximation (SAA) on a large set of benchmarking instances. Our simulations indicate that our approach can reduce the expected costs by as much as 30% compared to heuristic methods and is able to solve problems with $1000$ patients in about one minute, while SAA-approaches fail to obtain near-optimal solutions within 30 minutes, already for $100$ patients.
For robots to perform assistive tasks in unstructured home environments, they must learn and reason on the semantic knowledge of the environments. Despite a resurgence in the development of semantic reasoning architectures, these methods assume that all the training data is available a priori. However, each user's environment is unique and can continue to change over time, which makes these methods unsuitable for personalized home service robots. Although research in continual learning develops methods that can learn and adapt over time, most of these methods are tested in the narrow context of object classification on static image datasets. In this paper, we combine ideas from continual learning, semantic reasoning, and interactive machine learning literature and develop a novel interactive continual learning architecture for continual learning of semantic knowledge in a home environment through human-robot interaction. The architecture builds on core cognitive principles of learning and memory for efficient and real-time learning of new knowledge from humans. We integrate our architecture with a physical mobile manipulator robot and perform extensive system evaluations in a laboratory environment over two months. Our results demonstrate the effectiveness of our architecture to allow a physical robot to continually adapt to the changes in the environment from limited data provided by the users (experimenters), and use the learned knowledge to perform object fetching tasks.
Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.