We integrate foundational theories of meaning with a mathematical formalism of artificial general intelligence (AGI) to offer a comprehensive mechanistic explanation of meaning, communication, and symbol emergence. This synthesis holds significance for both AGI and broader debates concerning the nature of language, as it unifies pragmatics, logical truth conditional semantics, Peircean semiotics, and a computable model of enactive cognition, addressing phenomena that have traditionally evaded mechanistic explanation. By examining the conditions under which a machine can generate meaningful utterances or comprehend human meaning, we establish that the current generation of language models do not possess the same understanding of meaning as humans nor intend any meaning that we might attribute to their responses. To address this, we propose simulating human feelings and optimising models to construct weak representations. Our findings shed light on the relationship between meaning and intelligence, and how we can build machines that comprehend and intend meaning.
The ability of an agent to do well in new environments is a critical aspect of intelligence. In machine learning, this ability is known as $\textit{strong}$ or $\textit{out-of-distribution}$ generalization. However, merely considering differences in data distributions is inadequate for fully capturing differences between learning environments. In the present paper, we investigate $\textit{out-of-variable}$ generalization, which pertains to an agent's generalization capabilities concerning environments with variables that were never jointly observed before. This skill closely reflects the process of animate learning: we, too, explore Nature by probing, observing, and measuring $\textit{subsets}$ of variables at any given time. Mathematically, $\textit{out-of-variable}$ generalization requires the efficient re-use of past marginal information, i.e., information over subsets of previously observed variables. We study this problem, focusing on prediction tasks across environments that contain overlapping, yet distinct, sets of causes. We show that after fitting a classifier, the residual distribution in one environment reveals the partial derivative of the true generating function with respect to the unobserved causal parent in that environment. We leverage this information and propose a method that exhibits non-trivial out-of-variable generalization performance when facing an overlapping, yet distinct, set of causal predictors.
Learning features from data is one of the defining characteristics of deep learning, but our theoretical understanding of the role features play in deep learning is still rudimentary. To address this gap, we introduce a new tool, the interaction tensor, for empirically analyzing the interaction between data and model through features. With the interaction tensor, we make several key observations about how features are distributed in data and how models with different random seeds learn different features. Based on these observations, we propose a conceptual framework for feature learning. Under this framework, the expected accuracy for a single hypothesis and agreement for a pair of hypotheses can both be derived in closed-form. We demonstrate that the proposed framework can explain empirically observed phenomena, including the recently discovered Generalization Disagreement Equality (GDE) that allows for estimating the generalization error with only unlabeled data. Further, our theory also provides explicit construction of natural data distributions that break the GDE. Thus, we believe this work provides valuable new insight into our understanding of feature learning.
The recent upsurge in pre-trained large models (e.g. GPT-4) has swept across the entire deep learning community. Such powerful large language models (LLMs) demonstrate advanced generative ability and multimodal understanding capability, which quickly achieve new state-of-the-art performances on a variety of benchmarks. The pre-trained LLM usually plays the role as a universal AI model that can conduct various tasks, including context reasoning, article analysis and image content comprehension. However, considering the prohibitively high memory and computational cost for implementing such a large model, the conventional models (such as CNN and ViT), are still essential for many visual perception tasks. In this paper, we propose to enhance the representation ability of ordinary vision models for perception tasks (e.g. image classification) by taking advantage of large pre-trained models. We present a new learning paradigm in which the knowledge extracted from large pre-trained models are utilized to help models like CNN and ViT learn enhanced representations and achieve better performance. Firstly, we curate a high quality description set by prompting a multimodal LLM to generate descriptive text for all training images. Furthermore, we feed these detailed descriptions into a pre-trained encoder to extract text embeddings with rich semantic information that encodes the content of images. During training, text embeddings will serve as extra supervising signals and be aligned with image representations learned by vision models. The alignment process helps vision models learn better and achieve higher accuracy with the assistance of pre-trained LLMs. We conduct extensive experiments to verify that the proposed algorithm consistently improves the performance for various vision models with heterogeneous architectures.
Large Language Models (LLMs) have made remarkable advancements in the field of artificial intelligence, significantly reshaping the human-computer interaction. We not only focus on the performance of LLMs, but also explore their features from a psychological perspective, acknowledging the importance of understanding their behavioral characteristics. Our study examines the behavioral patterns displayed by LLMs by employing trait theory, a psychological framework. We first focus on evaluating the consistency of personality types exhibited by ChatGPT. Furthermore, experiments include cross-lingual effects on seven additional languages, and the investigation of six other LLMs. Moreover, the study investigates whether ChatGPT can exhibit personality changes in response to instructions or contextual cues. The findings show that ChatGPT consistently maintains its ENFJ personality regardless of instructions or contexts. By shedding light on the personalization of LLMs, we anticipate that our study will serve as a catalyst for further research in this field.
The shift from the understanding and prediction of processes to their optimization offers great benefits to businesses and other organizations. Precisely timed process interventions are the cornerstones of effective optimization. Prescriptive process monitoring (PresPM) is the sub-field of process mining that concentrates on process optimization. The emerging PresPM literature identifies state-of-the-art methods, causal inference (CI) and reinforcement learning (RL), without presenting a quantitative comparison. Most experiments are carried out using historical data, causing problems with the accuracy of the methods' evaluations and preempting online RL. Our contribution consists of experiments on timed process interventions with synthetic data that renders genuine online RL and the comparison to CI possible, and allows for an accurate evaluation of the results. Our experiments reveal that RL's policies outperform those from CI and are more robust at the same time. Indeed, the RL policies approach perfect policies. Unlike CI, the unaltered online RL approach can be applied to other, more generic PresPM problems such as next best activity recommendations. Nonetheless, CI has its merits in settings where online learning is not an option.
Computing is a critical driving force in the development of human civilization. In recent years, we have witnessed the emergence of intelligent computing, a new computing paradigm that is reshaping traditional computing and promoting digital revolution in the era of big data, artificial intelligence and internet-of-things with new computing theories, architectures, methods, systems, and applications. Intelligent computing has greatly broadened the scope of computing, extending it from traditional computing on data to increasingly diverse computing paradigms such as perceptual intelligence, cognitive intelligence, autonomous intelligence, and human-computer fusion intelligence. Intelligence and computing have undergone paths of different evolution and development for a long time but have become increasingly intertwined in recent years: intelligent computing is not only intelligence-oriented but also intelligence-driven. Such cross-fertilization has prompted the emergence and rapid advancement of intelligent computing. Intelligent computing is still in its infancy and an abundance of innovations in the theories, systems, and applications of intelligent computing are expected to occur soon. We present the first comprehensive survey of literature on intelligent computing, covering its theory fundamentals, the technological fusion of intelligence and computing, important applications, challenges, and future perspectives. We believe that this survey is highly timely and will provide a comprehensive reference and cast valuable insights into intelligent computing for academic and industrial researchers and practitioners.
Training machines to understand natural language and interact with humans is an elusive and essential task of artificial intelligence. A diversity of dialogue systems has been designed with the rapid development of deep learning techniques, especially the recent pre-trained language models (PrLMs). Among these studies, the fundamental yet challenging type of task is dialogue comprehension whose role is to teach the machines to read and comprehend the dialogue context before responding. In this paper, we review the previous methods from the technical perspective of dialogue modeling for the dialogue comprehension task. We summarize the characteristics and challenges of dialogue comprehension in contrast to plain-text reading comprehension. Then, we discuss three typical patterns of dialogue modeling. In addition, we categorize dialogue-related pre-training techniques which are employed to enhance PrLMs in dialogue scenarios. Finally, we highlight the technical advances in recent years and point out the lessons from the empirical analysis and the prospects towards a new frontier of researches.
A fundamental goal of scientific research is to learn about causal relationships. However, despite its critical role in the life and social sciences, causality has not had the same importance in Natural Language Processing (NLP), which has traditionally placed more emphasis on predictive tasks. This distinction is beginning to fade, with an emerging area of interdisciplinary research at the convergence of causal inference and language processing. Still, research on causality in NLP remains scattered across domains without unified definitions, benchmark datasets and clear articulations of the remaining challenges. In this survey, we consolidate research across academic areas and situate it in the broader NLP landscape. We introduce the statistical challenge of estimating causal effects, encompassing settings where text is used as an outcome, treatment, or as a means to address confounding. In addition, we explore potential uses of causal inference to improve the performance, robustness, fairness, and interpretability of NLP models. We thus provide a unified overview of causal inference for the computational linguistics community.
Large-scale pre-trained models (PTMs) such as BERT and GPT have recently achieved great success and become a milestone in the field of artificial intelligence (AI). Owing to sophisticated pre-training objectives and huge model parameters, large-scale PTMs can effectively capture knowledge from massive labeled and unlabeled data. By storing knowledge into huge parameters and fine-tuning on specific tasks, the rich knowledge implicitly encoded in huge parameters can benefit a variety of downstream tasks, which has been extensively demonstrated via experimental verification and empirical analysis. It is now the consensus of the AI community to adopt PTMs as backbone for downstream tasks rather than learning models from scratch. In this paper, we take a deep look into the history of pre-training, especially its special relation with transfer learning and self-supervised learning, to reveal the crucial position of PTMs in the AI development spectrum. Further, we comprehensively review the latest breakthroughs of PTMs. These breakthroughs are driven by the surge of computational power and the increasing availability of data, towards four important directions: designing effective architectures, utilizing rich contexts, improving computational efficiency, and conducting interpretation and theoretical analysis. Finally, we discuss a series of open problems and research directions of PTMs, and hope our view can inspire and advance the future study of PTMs.
Machine reading comprehension (MRC) aims to teach machines to read and comprehend human languages, which is a long-standing goal of natural language processing (NLP). With the burst of deep neural networks and the evolution of contextualized language models (CLMs), the research of MRC has experienced two significant breakthroughs. MRC and CLM, as a phenomenon, have a great impact on the NLP community. In this survey, we provide a comprehensive and comparative review on MRC covering overall research topics about 1) the origin and development of MRC and CLM, with a particular focus on the role of CLMs; 2) the impact of MRC and CLM to the NLP community; 3) the definition, datasets, and evaluation of MRC; 4) general MRC architecture and technical methods in the view of two-stage Encoder-Decoder solving architecture from the insights of the cognitive process of humans; 5) previous highlights, emerging topics, and our empirical analysis, among which we especially focus on what works in different periods of MRC researches. We propose a full-view categorization and new taxonomies on these topics. The primary views we have arrived at are that 1) MRC boosts the progress from language processing to understanding; 2) the rapid improvement of MRC systems greatly benefits from the development of CLMs; 3) the theme of MRC is gradually moving from shallow text matching to cognitive reasoning.