In this paper, we introduce CalliffusionV2, a novel system designed to produce natural Chinese calligraphy with flexible multi-modal control. Unlike previous approaches that rely solely on image or text inputs and lack fine-grained control, our system leverages both images to guide generations at fine-grained levels and natural language texts to describe the features of generations. CalliffusionV2 excels at creating a broad range of characters and can quickly learn new styles through a few-shot learning approach. It is also capable of generating non-Chinese characters without prior training. Comprehensive tests confirm that our system produces calligraphy that is both stylistically accurate and recognizable by neural network classifiers and human evaluators.
This work explores expanding the capabilities of large language models (LLMs) pretrained on text to generate 3D meshes within a unified model. This offers key advantages of (1) leveraging spatial knowledge already embedded in LLMs, derived from textual sources like 3D tutorials, and (2) enabling conversational 3D generation and mesh understanding. A primary challenge is effectively tokenizing 3D mesh data into discrete tokens that LLMs can process seamlessly. To address this, we introduce LLaMA-Mesh, a novel approach that represents the vertex coordinates and face definitions of 3D meshes as plain text, allowing direct integration with LLMs without expanding the vocabulary. We construct a supervised fine-tuning (SFT) dataset enabling pretrained LLMs to (1) generate 3D meshes from text prompts, (2) produce interleaved text and 3D mesh outputs as required, and (3) understand and interpret 3D meshes. Our work is the first to demonstrate that LLMs can be fine-tuned to acquire complex spatial knowledge for 3D mesh generation in a text-based format, effectively unifying the 3D and text modalities. LLaMA-Mesh achieves mesh generation quality on par with models trained from scratch while maintaining strong text generation performance.
In this work, we present MFTIQ, a novel dense long-term tracking model that advances the Multi-Flow Tracker (MFT) framework to address challenges in point-level visual tracking in video sequences. MFTIQ builds upon the flow-chaining concepts of MFT, integrating an Independent Quality (IQ) module that separates correspondence quality estimation from optical flow computations. This decoupling significantly enhances the accuracy and flexibility of the tracking process, allowing MFTIQ to maintain reliable trajectory predictions even in scenarios of prolonged occlusions and complex dynamics. Designed to be "plug-and-play", MFTIQ can be employed with any off-the-shelf optical flow method without the need for fine-tuning or architectural modifications. Experimental validations on the TAP-Vid Davis dataset show that MFTIQ with RoMa optical flow not only surpasses MFT but also performs comparably to state-of-the-art trackers while having substantially faster processing speed. Code and models available at //github.com/serycjon/MFTIQ .
This paper presents TE-NeXt, a novel and efficient architecture for Traversability Estimation (TE) from sparse LiDAR point clouds based on a residual convolution block. TE-NeXt block fuses notions of current trends such as attention mechanisms and 3D sparse convolutions. TE-NeXt aims to demonstrate high capacity for generalisation in a variety of urban and natural environments, using well-known and accessible datasets such as SemanticKITTI, Rellis-3D and SemanticUSL. Thus, the designed architecture ouperforms state-of-the-art methods in the problem of semantic segmentation, demonstrating better results in unstructured environments and maintaining high reliability and robustness in urbans environments, which leads to better abstraction. Implementation is available in a open repository to the scientific community with the aim of ensuring the reproducibility of results.
In this paper, we introduce Textured-GS, an innovative method for rendering Gaussian splatting that incorporates spatially defined color and opacity variations using Spherical Harmonics (SH). This approach enables each Gaussian to exhibit a richer representation by accommodating varying colors and opacities across its surface, significantly enhancing rendering quality compared to traditional methods. To demonstrate the merits of our approach, we have adapted the Mini-Splatting architecture to integrate textured Gaussians without increasing the number of Gaussians. Our experiments across multiple real-world datasets show that Textured-GS consistently outperforms both the baseline Mini-Splatting and standard 3DGS in terms of visual fidelity. The results highlight the potential of Textured-GS to advance Gaussian-based rendering technologies, promising more efficient and high-quality scene reconstructions. Our implementation is available at //github.com/ZhentaoHuang/Textured-GS.
This paper presents ViTOC (Vision Transformer and Object-aware Captioner), a novel vision-language model for image captioning that addresses the challenges of accuracy and diversity in generated descriptions. Unlike conventional approaches, ViTOC employs a dual-path architecture based on Vision Transformer and object detector, effectively fusing global visual features and local object information through learnable vectors. The model introduces an innovative object-aware prompting strategy that significantly enhances its capability in handling long-tail data. Experiments on the standard COCO dataset demonstrate that ViTOC outperforms baseline models across all evaluation metrics. Additionally, we propose a reference-free evaluation method based on CLIP to further validate the model's effectiveness. By utilizing pretrained visual model parameters, ViTOC achieves efficient end-to-end training.
This paper introduces a novel anomaly detection (AD) problem that focuses on identifying `odd-looking' objects relative to the other instances in a given scene. In contrast to the traditional AD benchmarks, anomalies in our task are scene-specific, defined by the regular instances that make up the majority. Since object instances may be only partly visible from a single viewpoint, our setting employs multiple views of each scene as input. To provide a testbed for future research in this task, we introduce two benchmarks, ToysAD-8K and PartsAD-15K. We propose a novel method that constructs 3D object-centric representations from multiple 2D views for each instance and detects the anomalous ones through a cross-instance comparison. We rigorously analyze our method quantitatively and qualitatively on the presented benchmarks.
This paper presents a novel approach to enhance image-to-image generation by leveraging the multimodal capabilities of the Large Language and Vision Assistant (LLaVA). We propose a framework where LLaVA analyzes input images and generates textual descriptions, hereinafter LLaVA-generated prompts. These prompts, along with the original image, are fed into the image-to-image generation pipeline. This enriched representation guides the generation process towards outputs that exhibit a stronger resemblance to the input image. Extensive experiments demonstrate the effectiveness of LLaVA-generated prompts in promoting image similarity. We observe a significant improvement in the visual coherence between the generated and input images compared to traditional methods. Future work will explore fine-tuning LLaVA prompts for increased control over the creative process. By providing more specific details within the prompts, we aim to achieve a delicate balance between faithfulness to the original image and artistic expression in the generated outputs.
In this paper, we introduce and prove QR Sort, a novel non-comparative integer sorting algorithm. This algorithm uses principles derived from the Quotient-Remainder Theorem and Counting Sort subroutines to sort input sequences stably. QR Sort exhibits the general time and space complexity $\mathcal{O}(n+d+\frac{m}{d})$, where $n$ denotes the input sequence length, $d$ denotes a predetermined positive integer, and $m$ denotes the range of input sequence values plus 1. Setting $d = \sqrt{m}$ minimizes time and space to $\mathcal{O}(n + \sqrt{m})$, resulting in linear time and space $\mathcal{O}(n)$ when $m \leq \mathcal{O}(n^2)$. We provide implementation optimizations for minimizing the time and space complexity, runtime, and number of computations expended by QR Sort, showcasing its adaptability. Our results reveal that QR Sort frequently outperforms established algorithms and serves as a reliable sorting algorithm for input sequences that exhibit large $m$ relative to $n$.
In this paper, we introduce a two-level attention schema, Poolingformer, for long document modeling. Its first level uses a smaller sliding window pattern to aggregate information from neighbors. Its second level employs a larger window to increase receptive fields with pooling attention to reduce both computational cost and memory consumption. We first evaluate Poolingformer on two long sequence QA tasks: the monolingual NQ and the multilingual TyDi QA. Experimental results show that Poolingformer sits atop three official leaderboards measured by F1, outperforming previous state-of-the-art models by 1.9 points (79.8 vs. 77.9) on NQ long answer, 1.9 points (79.5 vs. 77.6) on TyDi QA passage answer, and 1.6 points (67.6 vs. 66.0) on TyDi QA minimal answer. We further evaluate Poolingformer on a long sequence summarization task. Experimental results on the arXiv benchmark continue to demonstrate its superior performance.
We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.