With the fast development of big data, it has been easier than before to learn the optimal decision rule by updating the decision rule recursively and making online decisions. We study the online statistical inference of model parameters in a contextual bandit framework of sequential decision-making. We propose a general framework for online and adaptive data collection environment that can update decision rules via weighted stochastic gradient descent. We allow different weighting schemes of the stochastic gradient and establish the asymptotic normality of the parameter estimator. Our proposed estimator significantly improves the asymptotic efficiency over the previous averaged SGD approach via inverse probability weights. We also conduct an optimality analysis on the weights in a linear regression setting. We provide a Bahadur representation of the proposed estimator and show that the remainder term in the Bahadur representation entails a slower convergence rate compared to classical SGD due to the adaptive data collection.
In this work, we describe a generic approach to show convergence with high probability for both stochastic convex and non-convex optimization with sub-Gaussian noise. In previous works for convex optimization, either the convergence is only in expectation or the bound depends on the diameter of the domain. Instead, we show high probability convergence with bounds depending on the initial distance to the optimal solution. The algorithms use step sizes analogous to the standard settings and are universal to Lipschitz functions, smooth functions, and their linear combinations. This method can be applied to the non-convex case. We demonstrate an $O((1+\sigma^{2}\log(1/\delta))/T+\sigma/\sqrt{T})$ convergence rate when the number of iterations $T$ is known and an $O((1+\sigma^{2}\log(T/\delta))/\sqrt{T})$ convergence rate when $T$ is unknown for SGD, where $1-\delta$ is the desired success probability. These bounds improve over existing bounds in the literature. Additionally, we demonstrate that our techniques can be used to obtain high probability bound for AdaGrad-Norm (Ward et al., 2019) that removes the bounded gradients assumption from previous works. Furthermore, our technique for AdaGrad-Norm extends to the standard per-coordinate AdaGrad algorithm (Duchi et al., 2011), providing the first noise-adapted high probability convergence for AdaGrad.
Online optimization has gained increasing interest due to its capability of tracking real-world streaming data. Although online optimization methods have been widely studied in the setting of frequentist statistics, few works have considered online optimization with the Bayesian sampling problem. In this paper, we study an Online Particle-based Variational Inference (OPVI) algorithm that uses a set of particles to represent the approximating distribution. To reduce the gradient error caused by the use of stochastic approximation, we include a sublinear increasing batch-size method to reduce the variance. To track the performance of the OPVI algorithm with respect to a sequence of dynamically changing target posterior, we provide a detailed theoretical analysis from the perspective of Wasserstein gradient flow with a dynamic regret. Synthetic and Bayesian Neural Network experiments show that the proposed algorithm achieves better results than naively applying existing Bayesian sampling methods in the online setting.
A central issue in machine learning is how to train models on sensitive user data. Industry has widely adopted a simple algorithm: Stochastic Gradient Descent with noise (a.k.a. Stochastic Gradient Langevin Dynamics). However, foundational theoretical questions about this algorithm's privacy loss remain open -- even in the seemingly simple setting of smooth convex losses over a bounded domain. Our main result resolves these questions: for a large range of parameters, we characterize the differential privacy up to a constant factor. This result reveals that all previous analyses for this setting have the wrong qualitative behavior. Specifically, while previous privacy analyses increase ad infinitum in the number of iterations, we show that after a small burn-in period, running SGD longer leaks no further privacy. Our analysis departs from previous approaches based on fast mixing, instead using techniques based on optimal transport (namely, Privacy Amplification by Iteration) and the Sampled Gaussian Mechanism (namely, Privacy Amplification by Sampling). Our techniques readily extend to other settings, e.g., strongly convex losses, non-uniform stepsizes, arbitrary batch sizes, and random or cyclic choice of batches.
Multi-arm bandits are gaining popularity as they enable real-world sequential decision-making across application areas, including clinical trials, recommender systems, and online decision-making. Consequently, there is an increased desire to use the available adaptively collected datasets to distinguish whether one arm was more effective than the other, e.g., which product or treatment was more effective. Unfortunately, existing tools fail to provide valid inference when data is collected adaptively or require many untestable and technical assumptions, e.g., stationarity, iid rewards, bounded random variables, etc. Our paper introduces the design-based approach to inference for multi-arm bandits, where we condition the full set of potential outcomes and perform inference on the obtained sample. Our paper constructs valid confidence intervals for both the reward mean of any arm and the mean reward difference between any arms in an assumption-light manner, allowing the rewards to be arbitrarily distributed, non-iid, and from non-stationary distributions. In addition to confidence intervals, we also provide valid design-based confidence sequences, sequences of confidence intervals that have uniform type-1 error guarantees over time. Confidence sequences allow the agent to perform a hypothesis test as the data arrives sequentially and stop the experiment as soon as the agent is satisfied with the inference, e.g., the mean reward of an arm is statistically significantly higher than a desired threshold.
Single-call stochastic extragradient methods, like stochastic past extragradient (SPEG) and stochastic optimistic gradient (SOG), have gained a lot of interest in recent years and are one of the most efficient algorithms for solving large-scale min-max optimization and variational inequalities problems (VIP) appearing in various machine learning tasks. However, despite their undoubted popularity, current convergence analyses of SPEG and SOG require a bounded variance assumption. In addition, several important questions regarding the convergence properties of these methods are still open, including mini-batching, efficient step-size selection, and convergence guarantees under different sampling strategies. In this work, we address these questions and provide convergence guarantees for two large classes of structured non-monotone VIPs: (i) quasi-strongly monotone problems (a generalization of strongly monotone problems) and (ii) weak Minty variational inequalities (a generalization of monotone and Minty VIPs). We introduce the expected residual condition, explain its benefits, and show how it can be used to obtain a strictly weaker bound than previously used growth conditions, expected co-coercivity, or bounded variance assumptions. Equipped with this condition, we provide theoretical guarantees for the convergence of single-call extragradient methods for different step-size selections, including constant, decreasing, and step-size-switching rules. Furthermore, our convergence analysis holds under the arbitrary sampling paradigm, which includes importance sampling and various mini-batching strategies as special cases.
Model-based component-wise gradient boosting is a popular tool for data-driven variable selection. In order to improve its prediction and selection qualities even further, several modifications of the original algorithm have been developed, that mainly focus on different stopping criteria, leaving the actual variable selection mechanism untouched. We investigate different prediction-based mechanisms for the variable selection step in model-based component-wise gradient boosting. These approaches include Akaikes Information Criterion (AIC) as well as a selection rule relying on the component-wise test error computed via cross-validation. We implemented the AIC and cross-validation routines for Generalized Linear Models and evaluated them regarding their variable selection properties and predictive performance. An extensive simulation study revealed improved selection properties whereas the prediction error could be lowered in a real world application with age-standardized COVID-19 incidence rates.
When implementing the gradient descent method in low precision, the employment of stochastic rounding schemes helps to prevent stagnation of convergence caused by the vanishing gradient effect. Unbiased stochastic rounding yields zero bias by preserving small updates with probabilities proportional to their relative magnitudes. This study provides a theoretical explanation for the stagnation of the gradient descent method in low-precision computation. Additionally, we propose two new stochastic rounding schemes that trade the zero bias property with a larger probability to preserve small gradients. Our methods yield a constant rounding bias that, on average, lies in a descent direction. For convex problems, we prove that the proposed rounding methods typically have a beneficial effect on the convergence rate of gradient descent. We validate our theoretical analysis by comparing the performances of various rounding schemes when optimizing a multinomial logistic regression model and when training a simple neural network with an 8-bit floating-point format.
In this work, we extend the data-driven It\^{o} stochastic differential equation (SDE) framework for the pathwise assessment of short-term forecast errors to account for the time-dependent upper bound that naturally constrains the observable historical data and forecast. We propose a new nonlinear and time-inhomogeneous SDE model with a Jacobi-type diffusion term for the phenomenon of interest, simultaneously driven by the forecast and the constraining upper bound. We rigorously demonstrate the existence and uniqueness of a strong solution to the SDE model by imposing a condition for the time-varying mean-reversion parameter appearing in the drift term. The normalized forecast function is thresholded to keep such mean-reversion parameters bounded. The SDE model parameter calibration also covers the thresholding parameter of the normalized forecast by applying a novel iterative two-stage optimization procedure to user-selected approximations of the likelihood function. Another novel contribution is estimating the transition density of the forecast error process, not known analytically in a closed form, through a tailored kernel smoothing technique with the control variate method. We fit the model to the 2019 photovoltaic (PV) solar power daily production and forecast data in Uruguay, computing the daily maximum solar PV production estimation. Two statistical versions of the constrained SDE model are fit, with the beta and truncated normal distributions as proxies for the transition density. Empirical results include simulations of the normalized solar PV power production and pathwise confidence bands generated through an indirect inference method. An objective comparison of optimal parametric points associated with the two selected statistical approximations is provided by applying the innovative kernel density estimation technique of the transition function of the forecast error process.
Stochastic gradient descent (SGD) is a scalable and memory-efficient optimization algorithm for large datasets and stream data, which has drawn a great deal of attention and popularity. The applications of SGD-based estimators to statistical inference such as interval estimation have also achieved great success. However, most of the related works are based on i.i.d. observations or Markov chains. When the observations come from a mixing time series, how to conduct valid statistical inference remains unexplored. As a matter of fact, the general correlation among observations imposes a challenge on interval estimation. Most existing methods may ignore this correlation and lead to invalid confidence intervals. In this paper, we propose a mini-batch SGD estimator for statistical inference when the data is $\phi$-mixing. The confidence intervals are constructed using an associated mini-batch bootstrap SGD procedure. Using ``independent block'' trick from \cite{yu1994rates}, we show that the proposed estimator is asymptotically normal, and its limiting distribution can be effectively approximated by the bootstrap procedure. The proposed method is memory-efficient and easy to implement in practice. Simulation studies on synthetic data and an application to a real-world dataset confirm our theory.
Stochastic gradient MCMC (SGMCMC) offers a scalable alternative to traditional MCMC, by constructing an unbiased estimate of the gradient of the log-posterior with a small, uniformly-weighted subsample of the data. While efficient to compute, the resulting gradient estimator may exhibit a high variance and impact sampler performance. The problem of variance control has been traditionally addressed by constructing a better stochastic gradient estimator, often using control variates. We propose to use a discrete, non-uniform probability distribution to preferentially subsample data points that have a greater impact on the stochastic gradient. In addition, we present a method of adaptively adjusting the subsample size at each iteration of the algorithm, so that we increase the subsample size in areas of the sample space where the gradient is harder to estimate. We demonstrate that such an approach can maintain the same level of accuracy while substantially reducing the average subsample size that is used.