亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

It is commonly assumed that the end-to-end networking performance of edge offloading is purely dictated by that of the network connectivity between end devices and edge computing facilities, where ongoing innovation in 5G/6G networking can help. However, with the growing complexity of edge-offloaded computation and dynamic load balancing requirements, an offloaded task often goes through a multi-stage pipeline that spans across multiple compute nodes and proxies interconnected via a dedicated network fabric within a given edge computing facility. As the latest hardware-accelerated transport technologies such as RDMA and GPUDirect RDMA are adopted to build such network fabric, there is a need for good understanding of the full potential of these technologies in the context of computation offload and the effect of different factors such as GPU scheduling and characteristics of computation on the net performance gain achievable by these technologies. This paper unveils detailed insights into the latency overhead in typical machine learning (ML)-based computation pipelines and analyzes the potential benefits of adopting hardware-accelerated communication. To this end, we build a model-serving framework that supports various communication mechanisms. Using the framework, we identify performance bottlenecks in state-of-the-art model-serving pipelines and show how hardware-accelerated communication can alleviate them. For example, we show that GPUDirect RDMA can save 15--50\% of model-serving latency, which amounts to 70--160 ms.

相關內容

With the research advancement of Artificial Intelligence in the last years, there are new opportunities to mitigate real-world problems and advance technologically. Image recognition models in particular, are assigned with perception tasks to mitigate complex real-world challenges and lead to new solutions. Furthermore, the computational complexity and demand for resources of such models has also increased. To mitigate this, model optimization and hardware acceleration has come into play, but effectively integrating such concepts is a challenging and error-prone process. In order to allow developers and researchers to explore the robustness of deep learning image recognition models deployed on different hardware acceleration devices, we propose MutateNN, a tool that provides mutation testing and analysis capabilities for that purpose. To showcase its capabilities, we utilized 21 mutations for 7 widely-known pre-trained deep neural network models. We deployed our mutants on 4 different devices of varying computational capabilities and observed discrepancies in mutants related to conditional operations, as well as some unstable behaviour with those related to arithmetic types.

Communication overhead is one of the major challenges in Federated Learning(FL). A few classical schemes assume the server can extract the auxiliary information about training data of the participants from the local models to construct a central dummy dataset. The server uses the dummy dataset to finetune aggregated global model to achieve the target test accuracy in fewer communication rounds. In this paper, we summarize the above solutions into a data-based communication-efficient FL framework. The key of the proposed framework is to design an efficient extraction module(EM) which ensures the dummy dataset has a positive effect on finetuning aggregated global model. Different from the existing methods that use generator to design EM, our proposed method, FedINIBoost borrows the idea of gradient match to construct EM. Specifically, FedINIBoost builds a proxy dataset of the real dataset in two steps for each participant at each communication round. Then the server aggregates all the proxy datasets to form a central dummy dataset, which is used to finetune aggregated global model. Extensive experiments verify the superiority of our method compared with the existing classical method, FedAVG, FedProx, Moon and FedFTG. Moreover, FedINIBoost plays a significant role in finetuning the performance of aggregated global model at the initial stage of FL.

This paper introduces Artificial Intelligence Clinics on Mobile (AICOM), an open-source project devoted to answering the United Nations Sustainable Development Goal 3 (SDG3) on health, which represents a universal recognition that health is fundamental to human capital and social and economic development. The core motivation for the AICOM project is the fact that over 80% of the people in the least developed countries (LDCs) own a mobile phone, even though less than 40% of these people have internet access. Hence, through enabling AI-based disease diagnostics and screening capability on affordable mobile phones without connectivity will be a critical first step to addressing healthcare access problems. The technologies developed in the AICOM project achieve exactly this goal, and we have demonstrated the effectiveness of AICOM on monkeypox screening tasks. We plan to continue expanding and open-sourcing the AICOM platform, aiming for it to evolve into an universal AI doctor for the Underserved and Hard-to-Reach.

In recent years, online social networks have been the target of adversaries who seek to introduce discord into societies, to undermine democracies and to destabilize communities. Often the goal is not to favor a certain side of a conflict but to increase disagreement and polarization. To get a mathematical understanding of such attacks, researchers use opinion-formation models from sociology, such as the Friedkin--Johnsen model, and formally study how much discord the adversary can produce when altering the opinions for only a small set of users. In this line of work, it is commonly assumed that the adversary has full knowledge about the network topology and the opinions of all users. However, the latter assumption is often unrealistic in practice, where user opinions are not available or simply difficult to estimate accurately. To address this concern, we raise the following question: Can an attacker sow discord in a social network, even when only the network topology is known? We answer this question affirmatively. We present approximation algorithms for detecting a small set of users who are highly influential for the disagreement and polarization in the network. We show that when the adversary radicalizes these users and if the initial disagreement/polarization in the network is not very high, then our method gives a constant-factor approximation on the setting when the user opinions are known. To find the set of influential users, we provide a novel approximation algorithm for a variant of MaxCut in graphs with positive and negative edge weights. We experimentally evaluate our methods, which have access only to the network topology, and we find that they have similar performance as methods that have access to the network topology and all user opinions. We further present an NP-hardness proof, which was an open question by Chen and Racz [IEEE Trans. Netw. Sci. Eng., 2021].

UAV (unmanned aerial vehicle) is rapidly gaining traction in various human activities and has become an integral component of the satellite-air-ground-sea (SAGS) integrated network. As high-speed moving objects, UAVs not only have extremely strict requirements for communication delay, but also cannot be maliciously controlled as a weapon by the attacker. Therefore, an efficient and secure communication method designed for UAV networks is necessary. We propose a communication mechanism ESCM. For high efficiency, ESCM provides a routing protocol based on the artificial bee colony (ABC) algorithm to accelerate communications between UAVs. Meanwhile, we use blockchain to guarantee the security of UAV networks. However, blockchain has unstable links in high-mobility networks resulting in low consensus efficiency and high communication overhead. Consequently, ESCM introduces digital twin (DT), which transforms the UAV network into a static network by mapping UAVs from the physical world into Cyberspace. This virtual UAV network is called CyberUAV. Then, in CyberUAV, we design a blockchain consensus based on network coding, named Proof of Network Coding (PoNC). Analysis and simulation show that the above modules in ESCM have advantages over existing schemes. Through ablation studies, we demonstrate that these modules are indispensable for efficient and secure communication of UAV networks.

As a unifying concept in economics, game theory, and operations research, even in the Robotics and AI field, the utility is used to evaluate the level of individual needs, preferences, and interests. Especially for decision-making and learning in multi-agent/robot systems (MAS/MRS), a suitable utility model can guide agents in choosing reasonable strategies to achieve their current needs and learning to cooperate and organize their behaviors, optimizing the system's utility, building stable and reliable relationships, and guaranteeing each group member's sustainable development, similar to the human society. Although these systems' complex, large-scale, and long-term behaviors are strongly determined by the fundamental characteristics of the underlying relationships, there has been less discussion on the theoretical aspects of mechanisms and the fields of applications in Robotics and AI. This paper introduces a utility-orient needs paradigm to describe and evaluate inter and outer relationships among agents' interactions. Then, we survey existing literature in relevant fields to support it and propose several promising research directions along with some open problems deemed necessary for further investigations.

Few-shot learning (FSL) has emerged as an effective learning method and shows great potential. Despite the recent creative works in tackling FSL tasks, learning valid information rapidly from just a few or even zero samples still remains a serious challenge. In this context, we extensively investigated 200+ latest papers on FSL published in the past three years, aiming to present a timely and comprehensive overview of the most recent advances in FSL along with impartial comparisons of the strengths and weaknesses of the existing works. For the sake of avoiding conceptual confusion, we first elaborate and compare a set of similar concepts including few-shot learning, transfer learning, and meta-learning. Furthermore, we propose a novel taxonomy to classify the existing work according to the level of abstraction of knowledge in accordance with the challenges of FSL. To enrich this survey, in each subsection we provide in-depth analysis and insightful discussion about recent advances on these topics. Moreover, taking computer vision as an example, we highlight the important application of FSL, covering various research hotspots. Finally, we conclude the survey with unique insights into the technology evolution trends together with potential future research opportunities in the hope of providing guidance to follow-up research.

Games and simulators can be a valuable platform to execute complex multi-agent, multiplayer, imperfect information scenarios with significant parallels to military applications: multiple participants manage resources and make decisions that command assets to secure specific areas of a map or neutralize opposing forces. These characteristics have attracted the artificial intelligence (AI) community by supporting development of algorithms with complex benchmarks and the capability to rapidly iterate over new ideas. The success of artificial intelligence algorithms in real-time strategy games such as StarCraft II have also attracted the attention of the military research community aiming to explore similar techniques in military counterpart scenarios. Aiming to bridge the connection between games and military applications, this work discusses past and current efforts on how games and simulators, together with the artificial intelligence algorithms, have been adapted to simulate certain aspects of military missions and how they might impact the future battlefield. This paper also investigates how advances in virtual reality and visual augmentation systems open new possibilities in human interfaces with gaming platforms and their military parallels.

Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.

The demand for artificial intelligence has grown significantly over the last decade and this growth has been fueled by advances in machine learning techniques and the ability to leverage hardware acceleration. However, in order to increase the quality of predictions and render machine learning solutions feasible for more complex applications, a substantial amount of training data is required. Although small machine learning models can be trained with modest amounts of data, the input for training larger models such as neural networks grows exponentially with the number of parameters. Since the demand for processing training data has outpaced the increase in computation power of computing machinery, there is a need for distributing the machine learning workload across multiple machines, and turning the centralized into a distributed system. These distributed systems present new challenges, first and foremost the efficient parallelization of the training process and the creation of a coherent model. This article provides an extensive overview of the current state-of-the-art in the field by outlining the challenges and opportunities of distributed machine learning over conventional (centralized) machine learning, discussing the techniques used for distributed machine learning, and providing an overview of the systems that are available.

北京阿比特科技有限公司