亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As machine learning becomes more widely used, the need to study its implications in security and privacy becomes more urgent. Although the body of work in privacy has been steadily growing over the past few years, research on the privacy aspects of machine learning has received less focus than the security aspects. Our contribution in this research is an analysis of more than 40 papers related to privacy attacks against machine learning that have been published during the past seven years. We propose an attack taxonomy, together with a threat model that allows the categorization of different attacks based on the adversarial knowledge, and the assets under attack. An initial exploration of the causes of privacy leaks is presented, as well as a detailed analysis of the different attacks. Finally, we present an overview of the most commonly proposed defenses and a discussion of the open problems and future directions identified during our analysis.

相關內容

機器學習(Machine Learning)是一個研究計算學習方法的國際論壇。該雜志發表文章,報告廣泛的學習方法應用于各種學習問題的實質性結果。該雜志的特色論文描述研究的問題和方法,應用研究和研究方法的問題。有關學習問題或方法的論文通過實證研究、理論分析或與心理現象的比較提供了堅實的支持。應用論文展示了如何應用學習方法來解決重要的應用問題。研究方法論文改進了機器學習的研究方法。所有的論文都以其他研究人員可以驗證或復制的方式描述了支持證據。論文還詳細說明了學習的組成部分,并討論了關于知識表示和性能任務的假設。 官網地址:

We prove a priori and a posteriori error estimates, also known as the generalization error in the machine learning community, for physics-informed neural networks (PINNs) for linear PDEs. We analyze elliptic equations in primal and mixed form, elasticity, parabolic, hyperbolic and Stokes equations; and a PDE constrained optimization problem. For the analysis, we propose an abstract framework in the common language of bilinear forms, and we show that coercivity and continuity lead to error estimates. Our results give insight into the potential of neural networks for high dimensional PDEs and into the benefit of encoding constraints directly in the ansatz class. The provided estimates are -- apart from the Poisson equation -- the first results of best-approximation and a posteriori error-control type. Finally, utilizing recent advances in PINN optimization, we present numerical examples that illustrate the ability of the method to achieve accurate solutions.

Symmetry is present throughout nature and continues to play an increasingly central role in physics and machine learning. Fundamental symmetries, such as Poincar\'{e} invariance, allow physical laws discovered in laboratories on Earth to be extrapolated to the farthest reaches of the universe. Symmetry is essential to achieving this extrapolatory power in machine learning applications. For example, translation invariance in image classification allows models with fewer parameters, such as convolutional neural networks, to be trained on smaller data sets and achieve state-of-the-art performance. In this paper, we provide a unifying theoretical and methodological framework for incorporating symmetry into machine learning models in three ways: 1. enforcing known symmetry when training a model; 2. discovering unknown symmetries of a given model or data set; and 3. promoting symmetry during training by learning a model that breaks symmetries within a user-specified group of candidates when there is sufficient evidence in the data. We show that these tasks can be cast within a common mathematical framework whose central object is the Lie derivative associated with fiber-linear Lie group actions on vector bundles. We extend and unify several existing results by showing that enforcing and discovering symmetry are linear-algebraic tasks that are dual with respect to the bilinear structure of the Lie derivative. We also propose a novel way to promote symmetry by introducing a class of convex regularization functions based on the Lie derivative and nuclear norm relaxation to penalize symmetry breaking during training of machine learning models. We explain how these ideas can be applied to a wide range of machine learning models including basis function regression, dynamical systems discovery, multilayer perceptrons, and neural networks acting on spatial fields such as images.

Learning causal structures from interventional data is a fundamental problem with broad applications across various fields. While many previous works have focused on recovering the entire causal graph, in practice, there are scenarios where learning only part of the causal graph suffices. This is called $targeted$ causal discovery. In our work, we focus on two such well-motivated problems: subset search and causal matching. We aim to minimize the number of interventions in both cases. Towards this, we introduce the $Meek~separator$, which is a subset of vertices that, when intervened, decomposes the remaining unoriented edges into smaller connected components. We then present an efficient algorithm to find Meek separators that are of small sizes. Such a procedure is helpful in designing various divide-and-conquer-based approaches. In particular, we propose two randomized algorithms that achieve logarithmic approximation for subset search and causal matching, respectively. Our results provide the first known average-case provable guarantees for both problems. We believe that this opens up possibilities to design near-optimal methods for many other targeted causal structure learning problems arising from various applications.

Reinforcement learning algorithms commonly seek to optimize policies for solving one particular task. How should we explore an unknown dynamical system such that the estimated model globally approximates the dynamics and allows us to solve multiple downstream tasks in a zero-shot manner? In this paper, we address this challenge, by developing an algorithm -- OPAX -- for active exploration. OPAX uses well-calibrated probabilistic models to quantify the epistemic uncertainty about the unknown dynamics. It optimistically -- w.r.t. to plausible dynamics -- maximizes the information gain between the unknown dynamics and state observations. We show how the resulting optimization problem can be reduced to an optimal control problem that can be solved at each episode using standard approaches. We analyze our algorithm for general models, and, in the case of Gaussian process dynamics, we give a first-of-its-kind sample complexity bound and show that the epistemic uncertainty converges to zero. In our experiments, we compare OPAX with other heuristic active exploration approaches on several environments. Our experiments show that OPAX is not only theoretically sound but also performs well for zero-shot planning on novel downstream tasks.

While deep learning techniques have become extremely popular for solving a broad range of optimization problems, methods to enforce hard constraints during optimization, particularly on deep neural networks, remain underdeveloped. Inspired by the rich literature on meshless interpolation and its extension to spectral collocation methods in scientific computing, we develop a series of approaches for enforcing hard constraints on neural fields, which we refer to as Constrained Neural Fields (CNF). The constraints can be specified as a linear operator applied to the neural field and its derivatives. We also design specific model representations and training strategies for problems where standard models may encounter difficulties, such as conditioning of the system, memory consumption, and capacity of the network when being constrained. Our approaches are demonstrated in a wide range of real-world applications. Additionally, we develop a framework that enables highly efficient model and constraint specification, which can be readily applied to any downstream task where hard constraints need to be explicitly satisfied during optimization.

For a real-world decision-making problem, the reward function often needs to be engineered or learned. A popular approach is to utilize human feedback to learn a reward function for training. The most straightforward way to do so is to ask humans to provide ratings for state-action pairs on an absolute scale and take these ratings as reward samples directly. Another popular way is to ask humans to rank a small set of state-action pairs by preference and learn a reward function from these preference data. Recently, preference-based methods have demonstrated substantial success in empirical applications such as InstructGPT. In this work, we develop a theoretical comparison between these human feedback approaches in offline contextual bandits and show how human bias and uncertainty in feedback modelings can affect the theoretical guarantees of these approaches. Through this, our results seek to provide a theoretical explanation for the empirical successes of preference-based methods from a modeling perspective.

The Trusted Platform Module (TPM) is a cryptoprocessor designed to protect integrity and security of modern computers. Communications with the TPM go through the TPM Software Stack (TSS), a popular implementation of which is the open-source library tpm2-tss. Vulnerabilities in its code could allow attackers to recover sensitive information and take control of the system. This paper describes a case study on formal verification of tpm2-tss using the Frama-C verification platform. Heavily based on linked lists and complex data structures, the library code appears to be highly challenging for the verification tool. We present several issues and limitations we faced, illustrate them with examples and present solutions that allowed us to verify functional properties and the absence of runtime errors for a representative subset of functions. We describe verification results and desired tool improvements necessary to achieve a full formal verification of the target code.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

北京阿比特科技有限公司