Recent advancements in Neural Audio Codec (NAC) models have inspired their use in various speech processing tasks, including speech enhancement (SE). In this work, we propose a novel, efficient SE approach by leveraging the pre-quantization output of a pretrained NAC encoder. Unlike prior NAC-based SE methods, which process discrete speech tokens using Language Models (LMs), we perform SE within the continuous embedding space of the pretrained NAC, which is highly compressed along the time dimension for efficient representation. Our lightweight SE model, optimized through an embedding-level loss, delivers results comparable to SE baselines trained on larger datasets, with a significantly lower real-time factor of 0.005. Additionally, our method achieves a low GMAC of 3.94, reducing complexity 18-fold compared to Sepformer in a simulated cloud-based audio transmission environment. This work highlights a new, efficient NAC-based SE solution, particularly suitable for cloud applications where NAC is used to compress audio before transmission. Copyright 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Overparameterized models trained with (stochastic) gradient descent are ubiquitous in modern machine learning. These large models achieve unprecedented performance on test data, but their theoretical understanding is still limited. In this paper, we take a step towards filling this gap by adopting an optimization perspective. More precisely, we study the implicit regularization properties of the gradient flow "algorithm" for estimating the parameters of a deep diagonal neural network. Our main contribution is showing that this gradient flow induces a mirror flow dynamic on the model, meaning that it is biased towards a specific solution of the problem depending on the initialization of the network. Along the way, we prove several properties of the trajectory.
Recent deep-learning-based approaches to single-image reflection removal have shown promising advances, primarily for two reasons: 1) the utilization of recognition-pretrained features as inputs, and 2) the design of dual-stream interaction networks. However, according to the Information Bottleneck principle, high-level semantic clues tend to be compressed or discarded during layer-by-layer propagation. Additionally, interactions in dual-stream networks follow a fixed pattern across different layers, limiting overall performance. To address these limitations, we propose a novel architecture called Reversible Decoupling Network (RDNet), which employs a reversible encoder to secure valuable information while flexibly decoupling transmission- and reflection-relevant features during the forward pass. Furthermore, we customize a transmission-rate-aware prompt generator to dynamically calibrate features, further boosting performance. Extensive experiments demonstrate the superiority of RDNet over existing SOTA methods on five widely-adopted benchmark datasets. RDNet achieves the best performance in the NTIRE 2025 Single Image Reflection Removal in the Wild Challenge in both fidelity and perceptual comparison. Our code is available at //github.com/lime-j/RDNet
Recent advances in soft GPGPU architectures have shown that a small (<10K LUT), high performance (770 MHz) processor is possible in modern FPGAs. In this paper we architect and evaluate soft SIMT processor banked memories, which can support high bandwidth (up to 16 ports) while maintaining high speed (over 770 MHz). We compare 9 different memory architectures, including simpler multi-port memories, and run a total of 51 benchmarks (different combinations of algorithms, data sizes and processor memories) to develop a comprehensive set of data which will guide the reader in making an informed memory architecture decision for their application. Our benchmarks are comprised of matrix transpositions (memory intensive) and FFTs (split between memory accesses, floating point, and integer computations) to provide a balanced evaluation. We show that the simpler (but more memory block intensive) multi-port memories offer higher performance than the more architecturally complex banked memories for many applications, especially for smaller memories, but the effective footprint cost of the multi-port memories quickly becomes prohibitive as dataset sizes increase. Our banked memory implementation results - high bandwidth, high Fmax, and high density - can be used for other FPGA applications as well, such as HLS (High Level Synthesis).
We present our Balanced, Integrated and Grounded (BIG) argument for assuring the safety of AI systems. The BIG argument adopts a whole-system approach to constructing a safety case for AI systems of varying capability, autonomy and criticality. Firstly, it is balanced by addressing safety alongside other critical ethical issues such as privacy and equity, acknowledging complexities and trade-offs in the broader societal impact of AI. Secondly, it is integrated by bringing together the social, ethical and technical aspects of safety assurance in a way that is traceable and accountable. Thirdly, it is grounded in long-established safety norms and practices, such as being sensitive to context and maintaining risk proportionality. Whether the AI capability is narrow and constrained or general-purpose and powered by a frontier or foundational model, the BIG argument insists on a systematic treatment of safety. Further, it places a particular focus on the novel hazardous behaviours emerging from the advanced capabilities of frontier AI models and the open contexts in which they are rapidly being deployed. These complex issues are considered within a wider AI safety case, approaching assurance from both technical and sociotechnical perspectives. Examples illustrating the use of the BIG argument are provided throughout the paper.
The Next Token Prediction paradigm (NTP, for short) lies at the forefront of modern large foundational models that are pre-trained on diverse and large datasets. These models generalize effectively and have proven to be very successful in Natural Language Processing (NLP). Inspired by the generalization capabilities of Large Language Models (LLMs), we investigate whether the same NTP paradigm can also be applied to DBMS design and optimization tasks. Adopting NTP directly for database optimization is non-trivial due to the fundamental differences between the domains. In this paper, we present a framework termed Probe and Learn (PoLe) for applying NTP to optimize database systems. PoLe leverages Decision Transformers and hardware-generated tokens to effectively incorporate NTP into database systems. Preliminary results from the main-memory index scheduling task demonstrate that adopting NTP can improve both performance and generalizability.
Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.
Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.
Graph Neural Networks (GNNs) have recently been used for node and graph classification tasks with great success, but GNNs model dependencies among the attributes of nearby neighboring nodes rather than dependencies among observed node labels. In this work, we consider the task of inductive node classification using GNNs in supervised and semi-supervised settings, with the goal of incorporating label dependencies. Because current GNNs are not universal (i.e., most-expressive) graph representations, we propose a general collective learning approach to increase the representation power of any existing GNN. Our framework combines ideas from collective classification with self-supervised learning, and uses a Monte Carlo approach to sampling embeddings for inductive learning across graphs. We evaluate performance on five real-world network datasets and demonstrate consistent, significant improvement in node classification accuracy, for a variety of state-of-the-art GNNs.
Providing model-generated explanations in recommender systems is important to user experience. State-of-the-art recommendation algorithms -- especially the collaborative filtering (CF) based approaches with shallow or deep models -- usually work with various unstructured information sources for recommendation, such as textual reviews, visual images, and various implicit or explicit feedbacks. Though structured knowledge bases were considered in content-based approaches, they have been largely ignored recently due to the availability of vast amount of data and the learning power of many complex models. However, structured knowledge bases exhibit unique advantages in personalized recommendation systems. When the explicit knowledge about users and items is considered for recommendation, the system could provide highly customized recommendations based on users' historical behaviors and the knowledge is helpful for providing informed explanations regarding the recommended items. In this work, we propose to reason over knowledge base embeddings for explainable recommendation. Specifically, we propose a knowledge base representation learning framework to embed heterogeneous entities for recommendation, and based on the embedded knowledge base, a soft matching algorithm is proposed to generate personalized explanations for the recommended items. Experimental results on real-world e-commerce datasets verified the superior recommendation performance and the explainability power of our approach compared with state-of-the-art baselines.