Infusing deep learning with structural engineering has received widespread attention for both forward problems (structural simulation) and inverse problems (structural health monitoring). Based on Fourier Neural Operator, this study proposes VINO (Vehicle-bridge Interaction Neural Operator) to serve as the digital twin of bridge structures. VINO learns mappings between structural response fields and damage fields. In this study, VBI-FE dataset was established by running parametric finite element (FE) simulations considering a random distribution of structural initial damage field. Subsequently, VBI-EXP dataset was produced by conducting an experimental study under four damage scenarios. After VINO was pre-trained by VBI-FE and fine-tuned by VBI-EXP from the bridge at the healthy state, the model achieved the following two improvements. First, forward VINO can predict structural responses from damage field inputs more accurately than the FE model. Second, inverse VINO can determine, localize, and quantify damages in all scenarios, suggesting the practicality of data-driven approaches.
Observational studies are frequently used to estimate the effect of an exposure or treatment on an outcome. To obtain an unbiased estimate of the treatment effect, it is crucial to measure the exposure accurately. A common type of exposure misclassification is recall bias, which occurs in retrospective cohort studies when study subjects may inaccurately recall their past exposure. Specifically, differential recall bias can be problematic when examining the effect of a self-reported binary exposure since the magnitude of recall bias can differ between groups. In this paper, we provide the following contributions: 1) we derive bounds for the average treatment effect (ATE) in the presence of recall bias; 2) we develop several estimation approaches under different identification strategies; 3) we conduct simulation studies to evaluate their performance under several scenarios of model misspecification; 4) we propose a sensitivity analysis method that can examine the robustness of our results with respect to different assumptions; and 5) we apply the proposed framework to an observational study, estimating the effect of childhood physical abuse on adulthood mental health.
The goal of this work is to study waves interacting with partially immersed objects allowed to move freely in the vertical direction, and in a regime in which the propagation of the waves is described by the one dimensional Boussinesq-Abbott system. The problem can be reduced to a transmission problem for this Boussinesq system, in which the transmission conditions between the components of the domain at the left and at the right of the object are determined through the resolution of coupled forced ODEs in time satisfied by the vertical displacement of the object and the average discharge in the portion of the fluid located under the object. We propose a new extended formulation in which these ODEs are complemented by two other forced ODEs satisfied by the trace of the surface elevation at the contact points. The interest of this new extended formulation is that the forcing terms are easy to compute numerically and that the surface elevation at the contact points is furnished for free. Based on this formulation, we propose a second order scheme that involves a generalization of the MacCormack scheme with nonlocal flux and a source term, which is coupled to a second order Heun scheme for the ODEs. In order to validate this scheme, several explicit solutions for this wave-structure interaction problem are derived and can serve as benchmark for future codes. As a byproduct, our method provides a second order scheme for the generation of waves at the entrance of the numerical domain for the Boussinesq-Abbott system.
Background: Policy evaluation studies that assess how state-level policies affect health-related outcomes are foundational to health and social policy research. The relative ability of newer analytic methods to address confounding, a key source of bias in observational studies, has not been closely examined. Methods: We conducted a simulation study to examine how differing magnitudes of confounding affected the performance of four methods used for policy evaluations: (1) the two-way fixed effects (TWFE) difference-in-differences (DID) model; (2) a one-period lagged autoregressive (AR) model; (3) augmented synthetic control method (ASCM); and (4) the doubly robust DID approach with multiple time periods from Callaway-Sant'Anna (CSA). We simulated our data to have staggered policy adoption and multiple confounding scenarios (i.e., varying the magnitude and nature of confounding relationships). Results: Bias increased for each method: (1) as confounding magnitude increases; (2) when confounding is generated with respect to prior outcome trends (rather than levels), and (3) when confounding associations are nonlinear (rather than linear). The AR and ASCM have notably lower root mean squared error than the TWFE model and CSA approach for all scenarios; the exception is nonlinear confounding by prior trends, where CSA excels. Coverage rates are unreasonably high for ASCM (e.g., 100%), reflecting large model-based standard errors and wide confidence intervals in practice. Conclusions: Our simulation study indicated that no single method consistently outperforms the others. But a researcher's toolkit should include all methodological options. Our simulations and associated R package can help researchers choose the most appropriate approach for their data.
The COVID-19 pandemic has created unprecedented challenges for governments and healthcare systems worldwide, highlighting the critical importance of understanding the factors that contribute to virus transmission. This study aimed to identify the most influential age groups in COVID-19 infection rates at the US county level using the Modified Morris Method and deep learning for time series. Our approach involved training the state-of-the-art time-series model Temporal Fusion Transformer on different age groups as a static feature and the population vaccination status as the dynamic feature. We analyzed the impact of those age groups on COVID-19 infection rates by perturbing individual input features and ranked them based on their Morris sensitivity scores, which quantify their contribution to COVID-19 transmission rates. The findings are verified using ground truth data from the CDC and US Census, which provide the true infection rates for each age group. The results suggest that young adults were the most influential age group in COVID-19 transmission at the county level between March 1, 2020, and November 27, 2021. Using these results can inform public health policies and interventions, such as targeted vaccination strategies, to better control the spread of the virus. Our approach demonstrates the utility of feature sensitivity analysis in identifying critical factors contributing to COVID-19 transmission and can be applied in other public health domains.
Inclinometer probes are devices that can be used to measure deformations within earthwork slopes. This paper demonstrates a novel application of Bayesian techniques to real-world inclinometer data, providing both anomaly detection and forecasting. Specifically, this paper details an analysis of data collected from inclinometer data across the entire UK rail network. Practitioners have effectively two goals when processing monitoring data. The first is to identify any anomalous or dangerous movements, and the second is to predict potential future adverse scenarios by forecasting. In this paper we apply Uncertainty Quantification (UQ) techniques by implementing a Bayesian approach to anomaly detection and forecasting for inclinometer data. Subsequently, both costs and risks may be minimised by quantifying and evaluating the appropriate uncertainties. This framework may then act as an enabler for enhanced decision making and risk analysis. We show that inclinometer data can be described by a latent autocorrelated Markov process derived from measurements. This can be used as the transition model of a non-linear Bayesian filter. This allows for the prediction of system states. This learnt latent model also allows for the detection of anomalies: observations that are far from their expected value may be considered to have `high surprisal', that is they have a high information content relative to the model encoding represented by the learnt latent model. We successfully apply the forecasting and anomaly detection techniques to a large real-world data set in a computationally efficient manner. Although this paper studies inclinometers in particular, the techniques are broadly applicable to all areas of engineering UQ and Structural Health Monitoring (SHM).
The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.
Connecting Vision and Language plays an essential role in Generative Intelligence. For this reason, in the last few years, a large research effort has been devoted to image captioning, i.e. the task of describing images with syntactically and semantically meaningful sentences. Starting from 2015 the task has generally been addressed with pipelines composed of a visual encoding step and a language model for text generation. During these years, both components have evolved considerably through the exploitation of object regions, attributes, and relationships and the introduction of multi-modal connections, fully-attentive approaches, and BERT-like early-fusion strategies. However, regardless of the impressive results obtained, research in image captioning has not reached a conclusive answer yet. This work aims at providing a comprehensive overview and categorization of image captioning approaches, from visual encoding and text generation to training strategies, used datasets, and evaluation metrics. In this respect, we quantitatively compare many relevant state-of-the-art approaches to identify the most impactful technical innovations in image captioning architectures and training strategies. Moreover, many variants of the problem and its open challenges are analyzed and discussed. The final goal of this work is to serve as a tool for understanding the existing state-of-the-art and highlighting the future directions for an area of research where Computer Vision and Natural Language Processing can find an optimal synergy.
Graph Neural Networks (GNNs) are widely used for analyzing graph-structured data. Most GNN methods are highly sensitive to the quality of graph structures and usually require a perfect graph structure for learning informative embeddings. However, the pervasiveness of noise in graphs necessitates learning robust representations for real-world problems. To improve the robustness of GNN models, many studies have been proposed around the central concept of Graph Structure Learning (GSL), which aims to jointly learn an optimized graph structure and corresponding representations. Towards this end, in the presented survey, we broadly review recent progress of GSL methods for learning robust representations. Specifically, we first formulate a general paradigm of GSL, and then review state-of-the-art methods classified by how they model graph structures, followed by applications that incorporate the idea of GSL in other graph tasks. Finally, we point out some issues in current studies and discuss future directions.
Graph Neural Networks (GNNs), which generalize deep neural networks to graph-structured data, have drawn considerable attention and achieved state-of-the-art performance in numerous graph related tasks. However, existing GNN models mainly focus on designing graph convolution operations. The graph pooling (or downsampling) operations, that play an important role in learning hierarchical representations, are usually overlooked. In this paper, we propose a novel graph pooling operator, called Hierarchical Graph Pooling with Structure Learning (HGP-SL), which can be integrated into various graph neural network architectures. HGP-SL incorporates graph pooling and structure learning into a unified module to generate hierarchical representations of graphs. More specifically, the graph pooling operation adaptively selects a subset of nodes to form an induced subgraph for the subsequent layers. To preserve the integrity of graph's topological information, we further introduce a structure learning mechanism to learn a refined graph structure for the pooled graph at each layer. By combining HGP-SL operator with graph neural networks, we perform graph level representation learning with focus on graph classification task. Experimental results on six widely used benchmarks demonstrate the effectiveness of our proposed model.
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.