There has been significant progress in improving the accuracy and quality of consumer-level dense depth sensors. Nevertheless, there remains a common depth pixel artifact which we call smeared points. These are points not on any 3D surface and typically occur as interpolations between foreground and background objects. As they cause fictitious surfaces, these points have the potential to harm applications dependent on the depth maps. Statistical outlier removal methods fare poorly in removing these points as they tend also to remove actual surface points. Trained network-based point removal faces difficulty in obtaining sufficient annotated data. To address this, we propose a fully self-annotated method to train a smeared point removal classifier. Our approach relies on gathering 3D geometric evidence from multiple perspectives to automatically detect and annotate smeared points and valid points. To validate the effectiveness of our method, we present a new benchmark dataset: the Real Azure-Kinect dataset. Experimental results and ablation studies show that our method outperforms traditional filters and other self-annotated methods. Our work is publicly available at //github.com/wangmiaowei/wacv2024_smearedremover.git.
Recent approaches in Incomplete Utterance Rewriting (IUR) fail to capture the source of important words, which is crucial to edit the incomplete utterance, and introduce words from irrelevant utterances. We propose a novel and effective multi-task information interaction framework including context selection, edit matrix construction, and relevance merging to capture the multi-granularity of semantic information. Benefiting from fetching the relevant utterance and figuring out the important words, our approach outperforms existing state-of-the-art models on two benchmark datasets Restoration-200K and CANAND in this field. Code will be provided on \url{//github.com/yanmenxue/QR}.
This report provides a comprehensive analysis of the performance of MindOpt Adapter for CPLEX 12.9 in benchmark testing. CPLEX, recognized as a robust Mixed Integer Programming (MIP) solver, has faced some scrutiny regarding its performance on MIPLIB 2017 when configured to default settings. MindOpt Adapter aims to enhance CPLEX's performance by automatically applying improved configurations for solving optimization problems. Our testing demonstrates that MindOpt Adapter for CPLEX yields successfully solved 231 of the 240 problems in the MIPLIB 2017 benchmark set. This performance surpasses all the other solvers in terms of the number of problems solved and the geometric mean of running times. The report provides a comparison of the benchmark results against the outcomes achieved by CPLEX under its default configuration.
This study examines a resource-sharing problem involving multiple parties that agree to use a set of capacities together. We start with modeling the whole problem as a mathematical program, where all parties are required to exchange information to obtain the optimal objective function value. This information bears private data from each party in terms of coefficients used in the mathematical program. Moreover, the parties also consider the individual optimal solutions as private. In this setting, the concern for the parties is the privacy of their data and their optimal allocations. We propose a two-step approach to meet the privacy requirements of the parties. In the first step, we obtain a reformulated model that is amenable to a decomposition scheme. Although this scheme eliminates almost all data exchanges, it does not provide a formal privacy guarantee. In the second step, we provide this guarantee with a locally differentially private algorithm, which does not need a trusted aggregator, at the expense of deviating slightly from the optimality. We provide bounds on this deviation and discuss the consequences of these theoretical results. We also propose a novel modification to increase the efficiency of the algorithm in terms of reducing the theoretical optimality gap. The study ends with a numerical experiment on a planning problem that demonstrates an application of the proposed approach. As we work with a general linear optimization model, our analysis and discussion can be used in different application areas including production planning, logistics, and revenue management.
Transformer has been considered the dominating neural architecture in NLP and CV, mostly under a supervised setting. Recently, a similar surge of using Transformers has appeared in the domain of reinforcement learning (RL), but it is faced with unique design choices and challenges brought by the nature of RL. However, the evolution of Transformers in RL has not yet been well unraveled. Hence, in this paper, we seek to systematically review motivations and progress on using Transformers in RL, provide a taxonomy on existing works, discuss each sub-field, and summarize future prospects.
Graph neural networks (GNNs) have been a hot spot of recent research and are widely utilized in diverse applications. However, with the use of huger data and deeper models, an urgent demand is unsurprisingly made to accelerate GNNs for more efficient execution. In this paper, we provide a comprehensive survey on acceleration methods for GNNs from an algorithmic perspective. We first present a new taxonomy to classify existing acceleration methods into five categories. Based on the classification, we systematically discuss these methods and highlight their correlations. Next, we provide comparisons from aspects of the efficiency and characteristics of these methods. Finally, we suggest some promising prospects for future research.
Invariant risk minimization (IRM) has recently emerged as a promising alternative for domain generalization. Nevertheless, the loss function is difficult to optimize for nonlinear classifiers and the original optimization objective could fail when pseudo-invariant features and geometric skews exist. Inspired by IRM, in this paper we propose a novel formulation for domain generalization, dubbed invariant information bottleneck (IIB). IIB aims at minimizing invariant risks for nonlinear classifiers and simultaneously mitigating the impact of pseudo-invariant features and geometric skews. Specifically, we first present a novel formulation for invariant causal prediction via mutual information. Then we adopt the variational formulation of the mutual information to develop a tractable loss function for nonlinear classifiers. To overcome the failure modes of IRM, we propose to minimize the mutual information between the inputs and the corresponding representations. IIB significantly outperforms IRM on synthetic datasets, where the pseudo-invariant features and geometric skews occur, showing the effectiveness of proposed formulation in overcoming failure modes of IRM. Furthermore, experiments on DomainBed show that IIB outperforms $13$ baselines by $0.9\%$ on average across $7$ real datasets.
Current state-of-the-art semantic role labeling (SRL) uses a deep neural network with no explicit linguistic features. However, prior work has shown that gold syntax trees can dramatically improve SRL decoding, suggesting the possibility of increased accuracy from explicit modeling of syntax. In this work, we present linguistically-informed self-attention (LISA): a neural network model that combines multi-head self-attention with multi-task learning across dependency parsing, part-of-speech tagging, predicate detection and SRL. Unlike previous models which require significant pre-processing to prepare linguistic features, LISA can incorporate syntax using merely raw tokens as input, encoding the sequence only once to simultaneously perform parsing, predicate detection and role labeling for all predicates. Syntax is incorporated by training one attention head to attend to syntactic parents for each token. Moreover, if a high-quality syntactic parse is already available, it can be beneficially injected at test time without re-training our SRL model. In experiments on CoNLL-2005 SRL, LISA achieves new state-of-the-art performance for a model using predicted predicates and standard word embeddings, attaining 2.5 F1 absolute higher than the previous state-of-the-art on newswire and more than 3.5 F1 on out-of-domain data, nearly 10% reduction in error. On ConLL-2012 English SRL we also show an improvement of more than 2.5 F1. LISA also out-performs the state-of-the-art with contextually-encoded (ELMo) word representations, by nearly 1.0 F1 on news and more than 2.0 F1 on out-of-domain text.
Chatbot has become an important solution to rapidly increasing customer care demands on social media in recent years. However, current work on chatbot for customer care ignores a key to impact user experience - tones. In this work, we create a novel tone-aware chatbot that generates toned responses to user requests on social media. We first conduct a formative research, in which the effects of tones are studied. Significant and various influences of different tones on user experience are uncovered in the study. With the knowledge of effects of tones, we design a deep learning based chatbot that takes tone information into account. We train our system on over 1.5 million real customer care conversations collected from Twitter. The evaluation reveals that our tone-aware chatbot generates as appropriate responses to user requests as human agents. More importantly, our chatbot is perceived to be even more empathetic than human agents.
ASR (automatic speech recognition) systems like Siri, Alexa, Google Voice or Cortana has become quite popular recently. One of the key techniques enabling the practical use of such systems in people's daily life is deep learning. Though deep learning in computer vision is known to be vulnerable to adversarial perturbations, little is known whether such perturbations are still valid on the practical speech recognition. In this paper, we not only demonstrate such attacks can happen in reality, but also show that the attacks can be systematically conducted. To minimize users' attention, we choose to embed the voice commands into a song, called CommandSong. In this way, the song carrying the command can spread through radio, TV or even any media player installed in the portable devices like smartphones, potentially impacting millions of users in long distance. In particular, we overcome two major challenges: minimizing the revision of a song in the process of embedding commands, and letting the CommandSong spread through the air without losing the voice "command". Our evaluation demonstrates that we can craft random songs to "carry" any commands and the modify is extremely difficult to be noticed. Specially, the physical attack that we play the CommandSongs over the air and record them can success with 94 percentage.
Inspired by recent development of artificial satellite, remote sensing images have attracted extensive attention. Recently, noticeable progress has been made in scene classification and target detection.However, it is still not clear how to describe the remote sensing image content with accurate and concise sentences. In this paper, we investigate to describe the remote sensing images with accurate and flexible sentences. First, some annotated instructions are presented to better describe the remote sensing images considering the special characteristics of remote sensing images. Second, in order to exhaustively exploit the contents of remote sensing images, a large-scale aerial image data set is constructed for remote sensing image caption. Finally, a comprehensive review is presented on the proposed data set to fully advance the task of remote sensing caption. Extensive experiments on the proposed data set demonstrate that the content of the remote sensing image can be completely described by generating language descriptions. The data set is available at //github.com/2051/RSICD_optimal