亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents two novel hybrid beamforming (HYBF) designs for a multi-cell massive multiple-input-multiple-output (mMIMO) millimeter wave (mmWave) full duplex (FD) system under limited dynamic range (LDR). Firstly, we present a novel centralized HYBF (C-HYBF) scheme based on alternating optimization. In general, the complexity of C-HYBF schemes scales quadratically as a function of the number of users and cells, which may limit their scalability. Moreover, they require significant communication overhead to transfer complete channel state information (CSI) to the central node every channel coherence time for optimization. The central node also requires very high computational power to jointly optimize many variables for the uplink (UL) and downlink (DL) users in FD systems. To overcome these drawbacks, we propose a very low-complexity and scalable cooperative per-link parallel and distributed (P$\&$D)-HYBF scheme. It allows each mmWave FD base station (BS) to update the beamformers for its users in a distributed fashion and independently in parallel on different computational processors. The complexity of P$\&$D-HYBF scales only linearly as the network size grows, making it desirable for the next generation of large and dense mmWave FD networks. Simulation results show that both designs significantly outperform the fully digital half duplex (HD) system with only a few radio-frequency (RF) chains and achieve similar performance.

相關內容

We study the distributed minimum spanning tree (MST) problem, a fundamental problem in distributed computing. It is well-known that distributed MST can be solved in $\tilde{O}(D+\sqrt{n})$ rounds in the standard CONGEST model (where $n$ is the network size and $D$ is the network diameter) and this is essentially the best possible round complexity (up to logarithmic factors). However, in resource-constrained networks such as ad hoc wireless and sensor networks, nodes spending so much time can lead to significant spending of resources such as energy. Motivated by the above consideration, we study distributed algorithms for MST under the \emph{sleeping model} [Chatterjee et al., PODC 2020], a model for design and analysis of resource-efficient distributed algorithms. In the sleeping model, a node can be in one of two modes in any round -- \emph{sleeping} or \emph{awake} (unlike the traditional model where nodes are always awake). Only the rounds in which a node is \emph{awake} are counted, while \emph{sleeping} rounds are ignored. A node spends resources only in the awake rounds and hence the main goal is to minimize the \emph{awake complexity} of a distributed algorithm, the worst-case number of rounds any node is awake. We present deterministic and randomized distributed MST algorithms that have an \emph{optimal} awake complexity of $O(\log n)$ time with a matching lower bound. We also show that our randomized awake-optimal algorithm has essentially the best possible round complexity by presenting a lower bound of $\tilde{\Omega}(n)$ on the product of the awake and round complexity of any distributed algorithm (including randomized) that outputs an MST, where $\tilde{\Omega}$ hides a $1/(\text{polylog } n)$ factor.

This paper considers the problem of inference in cluster randomized experiments when cluster sizes are non-ignorable. Here, by a cluster randomized experiment, we mean one in which treatment is assigned at the level of the cluster; by non-ignorable cluster sizes we mean that "large" clusters and "small" clusters may be heterogeneous, and, in particular, the effects of the treatment may vary across clusters of differing sizes. In order to permit this sort of flexibility, we consider a sampling framework in which cluster sizes themselves are random. In this way, our analysis departs from earlier analyses of cluster randomized experiments in which cluster sizes are treated as non-random. We distinguish between two different parameters of interest: the equally-weighted cluster-level average treatment effect, and the size-weighted cluster-level average treatment effect. For each parameter, we provide methods for inference in an asymptotic framework where the number of clusters tends to infinity and treatment is assigned using simple random sampling. We additionally permit the experimenter to sample only a subset of the units within each cluster rather than the entire cluster and demonstrate the implications of such sampling for some commonly used estimators. A small simulation study shows the practical relevance of our theoretical results.

This paper presents new deterministic and distributed low-diameter decomposition algorithms for weighted graphs. In particular, we show that if one can efficiently compute approximate distances in a parallel or a distributed setting, one can also efficiently compute low-diameter decompositions. This consequently implies solutions to many fundamental distance based problems using a polylogarithmic number of approximate distance computations. Our low-diameter decomposition generalizes and extends the line of work starting from [Rozho\v{n}, Ghaffari STOC 2020] to weighted graphs in a very model-independent manner. Moreover, our clustering results have additional useful properties, including strong-diameter guarantees, separation properties, restricting cluster centers to specified terminals, and more. Applications include: -- The first near-linear work and polylogarithmic depth randomized and deterministic parallel algorithm for low-stretch spanning trees (LSST) with polylogarithmic stretch. Previously, the best parallel LSST algorithm required $m \cdot n^{o(1)}$ work and $n^{o(1)}$ depth and was inherently randomized. No deterministic LSST algorithm with truly sub-quadratic work and sub-linear depth was known. -- The first near-linear work and polylogarithmic depth deterministic algorithm for computing an $\ell_1$-embedding into polylogarithmic dimensional space with polylogarithmic distortion. The best prior deterministic algorithms for $\ell_1$-embeddings either require large polynomial work or are inherently sequential. Even when we apply our techniques to the classical problem of computing a ball-carving with strong-diameter $O(\log^2 n)$ in an unweighted graph, our new clustering algorithm still leads to an improvement in round complexity from $O(\log^{10} n)$ rounds [Chang, Ghaffari PODC 21] to $O(\log^{4} n)$.

As the next-generation wireless networks thrive, full-duplex and relaying techniques are combined to improve the network performance. Random linear network coding (RLNC) is another popular technique to enhance the efficiency and reliability in wireless communications. In this paper, in order to explore the potential of RLNC in full-duplex relay networks, we investigate two fundamental perfect RLNC schemes and theoretically analyze their completion delay performance. The first scheme is a straightforward application of conventional perfect RLNC studied in wireless broadcast, so it involves no additional process at the relay. Its performance serves as an upper bound among all perfect RLNC schemes. The other scheme allows sufficiently large buffer and unconstrained linear coding at the relay. It attains the optimal performance and serves as a lower bound among all RLNC schemes. For both schemes, closed-form formulae to characterize the expected completion delay at a single receiver as well as for the whole system are derived. Numerical results are also demonstrated to justify the theoretical characterizations, and compare the two new schemes with the existing one.

Hybrid precoding is a cost-efficient technique for millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) communications. This paper proposes a deep learning approach by using a distributed neural network for hybrid analog-and-digital precoding design with limited feedback. The proposed distributed neural precoding network, called DNet, is committed to achieving two objectives. First, the DNet realizes channel state information (CSI) compression with a distributed architecture of neural networks, which enables practical deployment on multiple users. Specifically, this neural network is composed of multiple independent sub-networks with the same structure and parameters, which reduces both the number of training parameters and network complexity. Secondly, DNet learns the calculation of hybrid precoding from reconstructed CSI from limited feedback. Different from existing black-box neural network design, the DNet is specifically designed according to the data form of the matrix calculation of hybrid precoding. Simulation results show that the proposed DNet significantly improves the performance up to nearly 50% compared to traditional limited feedback precoding methods under the tests with various CSI compression ratios.

Computing a dense subgraph is a fundamental problem in graph mining, with a diverse set of applications ranging from electronic commerce to community detection in social networks. In many of these applications, the underlying context is better modelled as a weighted hypergraph that keeps evolving with time. This motivates the problem of maintaining the densest subhypergraph of a weighted hypergraph in a {\em dynamic setting}, where the input keeps changing via a sequence of updates (hyperedge insertions/deletions). Previously, the only known algorithm for this problem was due to Hu et al. [HWC17]. This algorithm worked only on unweighted hypergraphs, and had an approximation ratio of $(1+\epsilon)r^2$ and an update time of $O(\text{poly} (r, \log n))$, where $r$ denotes the maximum rank of the input across all the updates. We obtain a new algorithm for this problem, which works even when the input hypergraph is weighted. Our algorithm has a significantly improved (near-optimal) approximation ratio of $(1+\epsilon)$ that is independent of $r$, and a similar update time of $O(\text{poly} (r, \log n))$. It is the first $(1+\epsilon)$-approximation algorithm even for the special case of weighted simple graphs. To complement our theoretical analysis, we perform experiments with our dynamic algorithm on large-scale, real-world data-sets. Our algorithm significantly outperforms the state of the art [HWC17] both in terms of accuracy and efficiency.

Federated learning (FL) has been recognized as a viable distributed learning paradigm which trains a machine learning model collaboratively with massive mobile devices in the wireless edge while protecting user privacy. Although various communication schemes have been proposed to expedite the FL process, most of them have assumed ideal wireless channels which provide reliable and lossless communication links between the server and mobile clients. Unfortunately, in practical systems with limited radio resources such as constraint on the training latency and constraints on the transmission power and bandwidth, transmission of a large number of model parameters inevitably suffers from quantization errors (QE) and transmission outage (TO). In this paper, we consider such non-ideal wireless channels, and carry out the first analysis showing that the FL convergence can be severely jeopardized by TO and QE, but intriguingly can be alleviated if the clients have uniform outage probabilities. These insightful results motivate us to propose a robust FL scheme, named FedTOE, which performs joint allocation of wireless resources and quantization bits across the clients to minimize the QE while making the clients have the same TO probability. Extensive experimental results are presented to show the superior performance of FedTOE for deep learning-based classification tasks with transmission latency constraints.

In the storied Colonel Blotto game, two colonels allocate $a$ and $b$ troops, respectively, to $k$ distinct battlefields. A colonel wins a battle if they assign more troops to that particular battle, and each colonel seeks to maximize their total number of victories. Despite the problem's formulation in 1921, the first polynomial-time algorithm to compute Nash equilibrium (NE) strategies for this game was discovered only quite recently. In 2016, \citep{ahmadinejad_dehghani_hajiaghayi_lucier_mahini_seddighin_2019} formulated a breakthrough algorithm to compute NE strategies for the Colonel Blotto game\footnote{To the best of our knowledge, the algorithm from \citep{ahmadinejad_dehghani_hajiaghayi_lucier_mahini_seddighin_2019} has computational complexity $O(k^{14}\max\{a,b\}^{13})$}, receiving substantial media coverage (e.g. \citep{Insider}, \citep{NSF}, \citep{ScienceDaily}). In this work, we present the first known $\epsilon$-approximation algorithm to compute NE strategies in the two-player Colonel Blotto game in runtime $\widetilde{O}(\epsilon^{-4} k^8 \max\{a,b\}^2)$ for arbitrary settings of these parameters. Moreover, this algorithm computes approximate coarse correlated equilibrium strategies in the multiplayer (continuous and discrete) Colonel Blotto game (when there are $\ell > 2$ colonels) with runtime $\widetilde{O}(\ell \epsilon^{-4} k^8 n^2 + \ell^2 \epsilon^{-2} k^3 n (n+k))$, where $n$ is the maximum troop count. Before this work, no polynomial-time algorithm was known to compute exact or approximate equilibrium (in any sense) strategies for multiplayer Colonel Blotto with arbitrary parameters. Our algorithm computes these approximate equilibria by a novel (to the author's knowledge) sampling technique with which we implicitly perform multiplicative weights update over the exponentially many strategies available to each player.

The fact that the millimeter-wave (mmWave) multiple-input multiple-output (MIMO) channel has sparse support in the spatial domain has motivated recent compressed sensing (CS)-based mmWave channel estimation methods, where the angles of arrivals (AoAs) and angles of departures (AoDs) are quantized using angle dictionary matrices. However, the existing CS-based methods usually obtain the estimation result through one-stage channel sounding that have two limitations: (i) the requirement of large-dimensional dictionary and (ii) unresolvable quantization error. These two drawbacks are irreconcilable; improvement of the one implies deterioration of the other. To address these challenges, we propose, in this paper, a two-stage method to estimate the AoAs and AoDs of mmWave channels. In the proposed method, the channel estimation task is divided into two stages, Stage I and Stage II. Specifically, in Stage I, the AoAs are estimated by solving a multiple measurement vectors (MMV) problem. In Stage II, based on the estimated AoAs, the receive sounders are designed to estimate AoDs. The dimension of the angle dictionary in each stage can be reduced, which in turn reduces the computational complexity substantially. We then analyze the successful recovery probability (SRP) of the proposed method, revealing the superiority of the proposed framework over the existing one-stage CS-based methods. We further enhance the reconstruction performance by performing resource allocation between the two stages. We also overcome the unresolvable quantization error issue present in the prior techniques by applying the atomic norm minimization method to each stage of the proposed two-stage approach. The simulation results illustrate the substantially improved performance with low complexity of the proposed two-stage method.

With the increasing penetration of distributed energy resources, distributed optimization algorithms have attracted significant attention for power systems applications due to their potential for superior scalability, privacy, and robustness to a single point-of-failure. The Alternating Direction Method of Multipliers (ADMM) is a popular distributed optimization algorithm; however, its convergence performance is highly dependent on the selection of penalty parameters, which are usually chosen heuristically. In this work, we use reinforcement learning (RL) to develop an adaptive penalty parameter selection policy for the AC optimal power flow (ACOPF) problem solved via ADMM with the goal of minimizing the number of iterations until convergence. We train our RL policy using deep Q-learning, and show that this policy can result in significantly accelerated convergence (up to a 59% reduction in the number of iterations compared to existing, curvature-informed penalty parameter selection methods). Furthermore, we show that our RL policy demonstrates promise for generalizability, performing well under unseen loading schemes as well as under unseen losses of lines and generators (up to a 50% reduction in iterations). This work thus provides a proof-of-concept for using RL for parameter selection in ADMM for power systems applications.

北京阿比特科技有限公司