亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Leveraging Graphics Processing Units (GPUs) to accelerate scientific software has proven to be highly successful, but in order to extract more performance, GPU programmers must overcome the high latency costs associated with their use. One method of reducing or hiding this latency cost is to use asynchronous streams to issue commands to the GPU. While performant, the streams model is an invasive abstraction, and has therefore proven difficult to integrate into general-purpose libraries. In this work, we enumerate the difficulties specific to library authors in adopting streams, and present recent work on addressing them. Finally, we present a unified asynchronous programming model for use in the Portable, Extensible, Toolkit for Scientific Computation (PETSc) to overcome these challenges. The new model shows broad performance benefits while remaining ergonomic to the user.

相關內容

PDDLStream solvers have recently emerged as viable solutions for Task and Motion Planning (TAMP) problems, extending PDDL to problems with continuous action spaces. Prior work has shown how PDDLStream problems can be reduced to a sequence of PDDL planning problems, which can then be solved using off-the-shelf planners. However, this approach can suffer from long runtimes. In this paper we propose LAZY, a solver for PDDLStream problems that maintains a single integrated search over action skeletons, which gets progressively more geometrically informed, as samples of possible motions are lazily drawn during motion planning. We explore how learned models of goal-directed policies and current motion sampling data can be incorporated in LAZY to adaptively guide the task planner. We show that this leads to significant speed-ups in the search for a feasible solution evaluated over unseen test environments of varying numbers of objects, goals, and initial conditions. We evaluate our TAMP approach by comparing to existing solvers for PDDLStream problems on a range of simulated 7DoF rearrangement/manipulation problems.

Information Technology has become a critical component in various industries, leading to an increased focus on software maintenance and monitoring. With the complexities of modern software systems, traditional maintenance approaches have become insufficient. The concept of AIOps has emerged to enhance predictive maintenance using Big Data and Machine Learning capabilities. However, exploiting AIOps requires addressing several challenges related to the complexity of data and incident management. Commercial solutions exist, but they may not be suitable for certain companies due to high costs, data governance issues, and limitations in covering private software. This paper investigates the feasibility of implementing on-premise AIOps solutions by leveraging open-source tools. We introduce a comprehensive AIOps infrastructure that we have successfully deployed in our company, and we provide the rationale behind different choices that we made to build its various components. Particularly, we provide insights into our approach and criteria for selecting a data management system and we explain its integration. Our experience can be beneficial for companies seeking to internally manage their software maintenance processes with a modern AIOps approach.

A plethora of outlier detectors have been explored in the time series domain, however, in a business sense, not all outliers are anomalies of interest. Existing anomaly detection solutions are confined to certain outlier detectors limiting their applicability to broader anomaly detection use cases. Network KPIs (Key Performance Indicators) tend to exhibit stochastic behaviour producing statistical outliers, most of which do not adversely affect business operations. Thus, a heuristic is required to capture the business definition of an anomaly for time series KPI. This article proposes an Adaptive Thresholding Heuristic (ATH) to dynamically adjust the detection threshold based on the local properties of the data distribution and adapt to changes in time series patterns. The heuristic derives the threshold based on the expected periodicity and the observed proportion of anomalies minimizing false positives and addressing concept drift. ATH can be used in conjunction with any underlying seasonality decomposition method and an outlier detector that yields an outlier score. This method has been tested on EON1-Cell-U, a labeled KPI anomaly dataset produced by Ericsson, to validate our hypothesis. Experimental results show that ATH is computationally efficient making it scalable for near real time anomaly detection and flexible with multiple forecasters and outlier detectors.

Adversarial examples are important to test and enhance the robustness of deep code models. As source code is discrete and has to strictly stick to complex grammar and semantics constraints, the adversarial example generation techniques in other domains are hardly applicable. Moreover, the adversarial example generation techniques specific to deep code models still suffer from unsatisfactory effectiveness due to the enormous ingredient search space. In this work, we propose a novel adversarial example generation technique (i.e., CODA) for testing deep code models. Its key idea is to use code differences between the target input (i.e., a given code snippet as the model input) and reference inputs (i.e., the inputs that have small code differences but different prediction results with the target input) to guide the generation of adversarial examples. It considers both structure differences and identifier differences to preserve the original semantics. Hence, the ingredient search space can be largely reduced as the one constituted by the two kinds of code differences, and thus the testing process can be improved by designing and guiding corresponding equivalent structure transformations and identifier renaming transformations. Our experiments on 15 deep code models demonstrate the effectiveness and efficiency of CODA, the naturalness of its generated examples, and its capability of enhancing model robustness after adversarial fine-tuning. For example, CODA reveals 88.05% and 72.51% more faults in models than the state-of-the-art techniques (i.e., CARROT and ALERT) on average, respectively.

This paper serves as a starting point for machine learning researchers, engineers and students who are interested in but not yet familiar with causal inference. We start by laying out an important set of assumptions that are collectively needed for causal identification, such as exchangeability, positivity, consistency and the absence of interference. From these assumptions, we build out a set of important causal inference techniques, which we do so by categorizing them into two buckets; active and passive approaches. We describe and discuss randomized controlled trials and bandit-based approaches from the active category. We then describe classical approaches, such as matching and inverse probability weighting, in the passive category, followed by more recent deep learning based algorithms. By finishing the paper with some of the missing aspects of causal inference from this paper, such as collider biases, we expect this paper to provide readers with a diverse set of starting points for further reading and research in causal inference and discovery.

In Large Language Models (LLMs), there have been consistent advancements in task-specific performance, largely influenced by effective prompt design. While recent research on prompting has enhanced the reasoning capabilities of LLMs, a gap remains in further improving their understanding abilities. In this study, we introduce Metacognitive Prompting (MP), a strategy inspired by human introspective reasoning processes. Using MP, LLMs undergo a systematic series of structured, self-aware evaluations, drawing on both their vast inherent knowledge and new insights. Our experiments involve five prevalent LLMs: Llama2, Vicuna, PaLM, GPT-3.5, and GPT-4, all of which span various general natural language understanding (NLU) tasks from the GLUE and SuperGLUE benchmarks. Results indicate that, although GPT-4 consistently excels in most tasks, PaLM, when equipped with MP, approaches its performance level. Furthermore, across models and datasets, MP consistently outperforms existing prompting methods, including standard and chain-of-thought prompting. This study underscores the potential to amplify the understanding abilities of LLMs and highlights the benefits of mirroring human introspective reasoning in NLU tasks.

Graph Convolutional Network (GCN) has achieved extraordinary success in learning effective task-specific representations of nodes in graphs. However, regarding Heterogeneous Information Network (HIN), existing HIN-oriented GCN methods still suffer from two deficiencies: (1) they cannot flexibly explore all possible meta-paths and extract the most useful ones for a target object, which hinders both effectiveness and interpretability; (2) they often need to generate intermediate meta-path based dense graphs, which leads to high computational complexity. To address the above issues, we propose an interpretable and efficient Heterogeneous Graph Convolutional Network (ie-HGCN) to learn the representations of objects in HINs. It is designed as a hierarchical aggregation architecture, i.e., object-level aggregation first, followed by type-level aggregation. The novel architecture can automatically extract useful meta-paths for each object from all possible meta-paths (within a length limit), which brings good model interpretability. It can also reduce the computational cost by avoiding intermediate HIN transformation and neighborhood attention. We provide theoretical analysis about the proposed ie-HGCN in terms of evaluating the usefulness of all possible meta-paths, its connection to the spectral graph convolution on HINs, and its quasi-linear time complexity. Extensive experiments on three real network datasets demonstrate the superiority of ie-HGCN over the state-of-the-art methods.

Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks. Despite its powerful capacity to learn and generalize from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep, which limit the model scalability. In this work, we propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism, \ie node self-attention, neighborhood attention, and layer memory attention. We explain why the proposed attentive modules can improve GNN for few-shot learning with theoretical analysis and illustrations. Extensive experiments show that the proposed Attentive GNN outperforms the state-of-the-art GNN-based methods for few-shot learning over the mini-ImageNet and Tiered-ImageNet datasets, with both inductive and transductive settings.

For better user experience and business effectiveness, Click-Through Rate (CTR) prediction has been one of the most important tasks in E-commerce. Although extensive CTR prediction models have been proposed, learning good representation of items from multimodal features is still less investigated, considering an item in E-commerce usually contains multiple heterogeneous modalities. Previous works either concatenate the multiple modality features, that is equivalent to giving a fixed importance weight to each modality; or learn dynamic weights of different modalities for different items through technique like attention mechanism. However, a problem is that there usually exists common redundant information across multiple modalities. The dynamic weights of different modalities computed by using the redundant information may not correctly reflect the different importance of each modality. To address this, we explore the complementarity and redundancy of modalities by considering modality-specific and modality-invariant features differently. We propose a novel Multimodal Adversarial Representation Network (MARN) for the CTR prediction task. A multimodal attention network first calculates the weights of multiple modalities for each item according to its modality-specific features. Then a multimodal adversarial network learns modality-invariant representations where a double-discriminators strategy is introduced. Finally, we achieve the multimodal item representations by combining both modality-specific and modality-invariant representations. We conduct extensive experiments on both public and industrial datasets, and the proposed method consistently achieves remarkable improvements to the state-of-the-art methods. Moreover, the approach has been deployed in an operational E-commerce system and online A/B testing further demonstrates the effectiveness.

Convolutional Neural Networks (CNNs) have gained significant traction in the field of machine learning, particularly due to their high accuracy in visual recognition. Recent works have pushed the performance of GPU implementations of CNNs to significantly improve their classification and training times. With these improvements, many frameworks have become available for implementing CNNs on both CPUs and GPUs, with no support for FPGA implementations. In this work we present a modified version of the popular CNN framework Caffe, with FPGA support. This allows for classification using CNN models and specialized FPGA implementations with the flexibility of reprogramming the device when necessary, seamless memory transactions between host and device, simple-to-use test benches, and the ability to create pipelined layer implementations. To validate the framework, we use the Xilinx SDAccel environment to implement an FPGA-based Winograd convolution engine and show that the FPGA layer can be used alongside other layers running on a host processor to run several popular CNNs (AlexNet, GoogleNet, VGG A, Overfeat). The results show that our framework achieves 50 GFLOPS across 3x3 convolutions in the benchmarks. This is achieved within a practical framework, which will aid in future development of FPGA-based CNNs.

北京阿比特科技有限公司