To effectively process data across a fleet of dynamic and distributed vehicles, it is crucial to implement resource provisioning techniques that provide reliable, cost-effective, and real-time computing services. This article explores resource provisioning for computation-intensive tasks over mobile vehicular clouds (MVCs). We use undirected weighted graphs (UWGs) to model both the execution of tasks and communication patterns among vehicles in a MVC. We then study low-latency and reliable scheduling of UWG asks through a novel methodology named double-plan-promoted isomorphic subgraph search and optimization (DISCO). In DISCO, two complementary plans are envisioned to ensure effective task completion: Plan A and Plan B. Plan A analyzes the past data to create an optimal mapping ($\alpha$) between tasks and the MVC in advance to the practical task scheduling. Plan B serves as a dependable backup, designed to find a feasible mapping ($\beta$) in case $\alpha$ fails during task scheduling due to unpredictable nature of the network.We delve into into DISCO's procedure and key factors that contribute to its success. Additionally, we provide a case study to demonstrate DISCO's commendable performance in regards to time efficiency and overhead. We further discuss a series of open directions for future research.
A cost-effective alternative to manual data labeling is weak supervision (WS), where data samples are automatically annotated using a predefined set of labeling functions (LFs), rule-based mechanisms that generate artificial labels for the associated classes. In this work, we investigate noise reduction techniques for WS based on the principle of k-fold cross-validation. We introduce a new algorithm ULF for Unsupervised Labeling Function correction, which denoises WS data by leveraging models trained on all but some LFs to identify and correct biases specific to the held-out LFs. Specifically, ULF refines the allocation of LFs to classes by re-estimating this assignment on highly reliable cross-validated samples. Evaluation on multiple datasets confirms ULF's effectiveness in enhancing WS learning without the need for manual labeling.
In the absence of readily available labeled data for a given sequence labeling task and language, annotation projection has been proposed as one of the possible strategies to automatically generate annotated data. Annotation projection has often been formulated as the task of transporting, on parallel corpora, the labels pertaining to a given span in the source language into its corresponding span in the target language. In this paper we present T-Projection, a novel approach for annotation projection that leverages large pretrained text-to-text language models and state-of-the-art machine translation technology. T-Projection decomposes the label projection task into two subtasks: (i) A candidate generation step, in which a set of projection candidates using a multilingual T5 model is generated and, (ii) a candidate selection step, in which the generated candidates are ranked based on translation probabilities. We conducted experiments on intrinsic and extrinsic tasks in 5 Indo-European and 8 low-resource African languages. We demostrate that T-projection outperforms previous annotation projection methods by a wide margin. We believe that T-Projection can help to automatically alleviate the lack of high-quality training data for sequence labeling tasks. Code and data are publicly available.
Despite outstanding performance in many tasks, language models are notoriously inclined to make factual errors in tasks requiring arithmetic computation. We address this deficiency by creating Calc-X, a collection of datasets that demonstrates the appropriate use of a calculator in reasoning chains. Calc-X is suitable for teaching language models to offload computations to a symbolic system. We survey and unify several existing chain-of-thought datasets into a proposed format, resulting in a standard collection of over 300,000 samples requiring arithmetic reasoning. Finally, we use the new Calc-X collection to train open-source calculator-using models we call Calcformers and show that these models approximately double the accuracy of generating correct results compared to vanilla language model baselines. We make all Calc-X datasets, source code and Calcformers models publicly available.
A crucial element in predicting the outcomes of process interventions and making informed decisions about the process is unraveling the genuine relationships between the execution of process activities. Contemporary process discovery algorithms exploit time precedence as their main source of model derivation. Such reliance can sometimes be deceiving from a causal perspective. This calls for faithful new techniques to discover the true execution dependencies among the tasks in the process. To this end, our work offers a systematic approach to the unveiling of the true causal business process by leveraging an existing causal discovery algorithm over activity timing. In addition, this work delves into a set of conditions under which process mining discovery algorithms generate a model that is incongruent with the causal business process model, and shows how the latter model can be methodologically employed for a sound analysis of the process. Our methodology searches for such discrepancies between the two models in the context of three causal patterns, and derives a new view in which these inconsistencies are annotated over the mined process model. We demonstrate our methodology employing two open process mining algorithms, the IBM Process Mining tool, and the LiNGAM causal discovery technique. We apply it on a synthesized dataset and on two open benchmark data sets.
Multi-label text classification is a critical task in the industry. It helps to extract structured information from large amount of textual data. We propose Text to Topic (Text2Topic), which achieves high multi-label classification performance by employing a Bi-Encoder Transformer architecture that utilizes concatenation, subtraction, and multiplication of embeddings on both text and topic. Text2Topic also supports zero-shot predictions, produces domain-specific text embeddings, and enables production-scale batch-inference with high throughput. The final model achieves accurate and comprehensive results compared to state-of-the-art baselines, including large language models (LLMs). In this study, a total of 239 topics are defined, and around 1.6 million text-topic pairs annotations (in which 200K are positive) are collected on approximately 120K texts from 3 main data sources on Booking.com. The data is collected with optimized smart sampling and partial labeling. The final Text2Topic model is deployed on a real-world stream processing platform, and it outperforms other models with 92.9% micro mAP, as well as a 75.8% macro mAP score. We summarize the modeling choices which are extensively tested through ablation studies, and share detailed in-production decision-making steps.
Passage retrieval is a fundamental task in many information systems, such as web search and question answering, where both efficiency and effectiveness are critical concerns. In recent years, neural retrievers based on pre-trained language models (PLM), such as dual-encoders, have achieved huge success. Yet, studies have found that the performance of dual-encoders are often limited due to the neglecting of the interaction information between queries and candidate passages. Therefore, various interaction paradigms have been proposed to improve the performance of vanilla dual-encoders. Particularly, recent state-of-the-art methods often introduce late-interaction during the model inference process. However, such late-interaction based methods usually bring extensive computation and storage cost on large corpus. Despite their effectiveness, the concern of efficiency and space footprint is still an important factor that limits the application of interaction-based neural retrieval models. To tackle this issue, we incorporate implicit interaction into dual-encoders, and propose I^3 retriever. In particular, our implicit interaction paradigm leverages generated pseudo-queries to simulate query-passage interaction, which jointly optimizes with query and passage encoders in an end-to-end manner. It can be fully pre-computed and cached, and its inference process only involves simple dot product operation of the query vector and passage vector, which makes it as efficient as the vanilla dual encoders. We conduct comprehensive experiments on MSMARCO and TREC2019 Deep Learning Datasets, demonstrating the I^3 retriever's superiority in terms of both effectiveness and efficiency. Moreover, the proposed implicit interaction is compatible with special pre-training and knowledge distillation for passage retrieval, which brings a new state-of-the-art performance.
Limiting the injection rate to restrict the pressure below a threshold at a critical location can be an important goal of simulations that model the subsurface pressure between injection and extraction wells. The pressure is approximated by the solution of Darcy's partial differential equation (PDE) for a given permeability field. The subsurface permeability is modeled as a random field since it is known only up to statistical properties. This induces uncertainty in the computed pressure. Solving the PDE for an ensemble of random permeability simulations enables estimating a probability distribution for the pressure at the critical location. These simulations are computationally expensive, and practitioners often need rapid online guidance for real-time pressure management. An ensemble of numerical PDE solutions is used to construct a Gaussian process regression model that can quickly predict the pressure at the critical location as a function of the extraction rate and permeability realization. Our first novel contribution is to identify a sampling methodology for the random environment and matching kernel technology for which fitting the Gaussian process regression model scales as O(n log n) instead of the typical O(n^3) rate in the number of samples n used to fit the surrogate. The surrogate model allows almost instantaneous predictions for the pressure at the critical location as a function of the extraction rate and permeability realization. Our second contribution is a novel algorithm to calibrate the uncertainty in the surrogate model to the discrepancy between the true pressure solution of Darcy's equation and the numerical solution. Although our method is derived for building a surrogate for the solution of Darcy's equation with a random permeability field, the framework broadly applies to solutions of other PDE with random coefficients.
Question answering over hybrid contexts is a complex task, which requires the combination of information extracted from unstructured texts and structured tables in various ways. Recently, In-Context Learning demonstrated significant performance advances for reasoning tasks. In this paradigm, a large language model performs predictions based on a small set of supporting exemplars. The performance of In-Context Learning depends heavily on the selection procedure of the supporting exemplars, particularly in the case of HybridQA, where considering the diversity of reasoning chains and the large size of the hybrid contexts becomes crucial. In this work, we present Selection of ExEmplars for hybrid Reasoning (SEER), a novel method for selecting a set of exemplars that is both representative and diverse. The key novelty of SEER is that it formulates exemplar selection as a Knapsack Integer Linear Program. The Knapsack framework provides the flexibility to incorporate diversity constraints that prioritize exemplars with desirable attributes, and capacity constraints that ensure that the prompt size respects the provided capacity budgets. The effectiveness of SEER is demonstrated on FinQA and TAT-QA, two real-world benchmarks for HybridQA, where it outperforms previous exemplar selection methods.
Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.