亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Document-level relation extraction (DocRE) poses the challenge of identifying relationships between entities within a document as opposed to the traditional RE setting where a single sentence is input. Existing approaches rely on logical reasoning or contextual cues from entities. This paper reframes document-level RE as link prediction over a knowledge graph with distinct benefits: 1) Our approach combines entity context with document-derived logical reasoning, enhancing link prediction quality. 2) Predicted links between entities offer interpretability, elucidating employed reasoning. We evaluate our approach on three benchmark datasets: DocRED, ReDocRED, and DWIE. The results indicate that our proposed method outperforms the state-of-the-art models and suggests that incorporating context-based link prediction techniques can enhance the performance of document-level relation extraction models.

相關內容

網(wang)絡(luo)(luo)中的(de)(de)鏈路預測(Link Prediction)是指如(ru)何(he)通過已知的(de)(de)網(wang)絡(luo)(luo)節點以(yi)及網(wang)絡(luo)(luo)結構等(deng)信息預測網(wang)絡(luo)(luo)中尚(shang)未產生連(lian)邊的(de)(de)兩(liang)個(ge)(ge)節點之間產生鏈接(jie)的(de)(de)可能(neng)性。這種預測既包含了對未知鏈接(jie)(exist yet unknown links)的(de)(de)預測也包含了對未來(lai)鏈接(jie)(future links)的(de)(de)預測。該問題的(de)(de)研究在理論和(he)應(ying)用兩(liang)個(ge)(ge)方面都具有(you)重要(yao)的(de)(de)意義和(he)價(jia)值 。

Self-supervised learned models have been found to be very effective for certain speech tasks such as automatic speech recognition, speaker identification, keyword spotting and others. While the features are undeniably useful in speech recognition and associated tasks, their utility in speech enhancement systems is yet to be firmly established, and perhaps not properly understood. In this paper, we investigate the uses of SSL representations for single-channel speech enhancement in challenging conditions and find that they add very little value for the enhancement task. Our constraints are designed around on-device real-time speech enhancement -- model is causal, the compute footprint is small. Additionally, we focus on low SNR conditions where such models struggle to provide good enhancement. In order to systematically examine how SSL representations impact performance of such enhancement models, we propose a variety of techniques to utilize these embeddings which include different forms of knowledge-distillation and pre-training.

The goal of few-shot relation extraction is to predict relations between name entities in a sentence when only a few labeled instances are available for training. Existing few-shot relation extraction methods focus on uni-modal information such as text only. This reduces performance when there are no clear contexts between the name entities described in text. We propose a multi-modal few-shot relation extraction model (MFS-HVE) that leverages both textual and visual semantic information to learn a multi-modal representation jointly. The MFS-HVE includes semantic feature extractors and multi-modal fusion components. The MFS-HVE semantic feature extractors are developed to extract both textual and visual features. The visual features include global image features and local object features within the image. The MFS-HVE multi-modal fusion unit integrates information from various modalities using image-guided attention, object-guided attention, and hybrid feature attention to fully capture the semantic interaction between visual regions of images and relevant texts. Extensive experiments conducted on two public datasets demonstrate that semantic visual information significantly improves the performance of few-shot relation prediction.

Uniformity plays a crucial role in the assessment of learned representations, contributing to a deeper comprehension of self-supervised learning. The seminal work by \citet{Wang2020UnderstandingCR} introduced a uniformity metric that quantitatively measures the collapse degree of learned representations. Directly optimizing this metric together with alignment proves to be effective in preventing constant collapse. However, we present both theoretical and empirical evidence revealing that this metric lacks sensitivity to dimensional collapse, highlighting its limitations. To address this limitation and design a more effective uniformity metric, this paper identifies five fundamental properties, some of which the existing uniformity metric fails to meet. We subsequently introduce a novel uniformity metric that satisfies all of these desiderata and exhibits sensitivity to dimensional collapse. When applied as an auxiliary loss in various established self-supervised methods, our proposed uniformity metric consistently enhances their performance in downstream tasks.Our code was released at //github.com/sunset-clouds/WassersteinUniformityMetric.

Monocular 3D detection (M3D) aims for precise 3D object localization from a single-view image which usually involves labor-intensive annotation of 3D detection boxes. Weakly supervised M3D has recently been studied to obviate the 3D annotation process by leveraging many existing 2D annotations, but it often requires extra training data such as LiDAR point clouds or multi-view images which greatly degrades its applicability and usability in various applications. We propose SKD-WM3D, a weakly supervised monocular 3D detection framework that exploits depth information to achieve M3D with a single-view image exclusively without any 3D annotations or other training data. One key design in SKD-WM3D is a self-knowledge distillation framework, which transforms image features into 3D-like representations by fusing depth information and effectively mitigates the inherent depth ambiguity in monocular scenarios with little computational overhead in inference. In addition, we design an uncertainty-aware distillation loss and a gradient-targeted transfer modulation strategy which facilitate knowledge acquisition and knowledge transfer, respectively. Extensive experiments show that SKD-WM3D surpasses the state-of-the-art clearly and is even on par with many fully supervised methods.

This work presents a new method for enhancing communication efficiency in stochastic Federated Learning that trains over-parameterized random networks. In this setting, a binary mask is optimized instead of the model weights, which are kept fixed. The mask characterizes a sparse sub-network that is able to generalize as good as a smaller target network. Importantly, sparse binary masks are exchanged rather than the floating point weights in traditional federated learning, reducing communication cost to at most 1 bit per parameter (Bpp). We show that previous state of the art stochastic methods fail to find sparse networks that can reduce the communication and storage overhead using consistent loss objectives. To address this, we propose adding a regularization term to local objectives that acts as a proxy of the transmitted masks entropy, therefore encouraging sparser solutions by eliminating redundant features across sub-networks. Extensive empirical experiments demonstrate significant improvements in communication and memory efficiency of up to five magnitudes compared to the literature, with minimal performance degradation in validation accuracy in some instances

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Weakly supervised phrase grounding aims at learning region-phrase correspondences using only image-sentence pairs. A major challenge thus lies in the missing links between image regions and sentence phrases during training. To address this challenge, we leverage a generic object detector at training time, and propose a contrastive learning framework that accounts for both region-phrase and image-sentence matching. Our core innovation is the learning of a region-phrase score function, based on which an image-sentence score function is further constructed. Importantly, our region-phrase score function is learned by distilling from soft matching scores between the detected object class names and candidate phrases within an image-sentence pair, while the image-sentence score function is supervised by ground-truth image-sentence pairs. The design of such score functions removes the need of object detection at test time, thereby significantly reducing the inference cost. Without bells and whistles, our approach achieves state-of-the-art results on the task of visual phrase grounding, surpassing previous methods that require expensive object detectors at test time.

Automatic KB completion for commonsense knowledge graphs (e.g., ATOMIC and ConceptNet) poses unique challenges compared to the much studied conventional knowledge bases (e.g., Freebase). Commonsense knowledge graphs use free-form text to represent nodes, resulting in orders of magnitude more nodes compared to conventional KBs (18x more nodes in ATOMIC compared to Freebase (FB15K-237)). Importantly, this implies significantly sparser graph structures - a major challenge for existing KB completion methods that assume densely connected graphs over a relatively smaller set of nodes. In this paper, we present novel KB completion models that can address these challenges by exploiting the structural and semantic context of nodes. Specifically, we investigate two key ideas: (1) learning from local graph structure, using graph convolutional networks and automatic graph densification and (2) transfer learning from pre-trained language models to knowledge graphs for enhanced contextual representation of knowledge. We describe our method to incorporate information from both these sources in a joint model and provide the first empirical results for KB completion on ATOMIC and evaluation with ranking metrics on ConceptNet. Our results demonstrate the effectiveness of language model representations in boosting link prediction performance and the advantages of learning from local graph structure (+1.5 points in MRR for ConceptNet) when training on subgraphs for computational efficiency. Further analysis on model predictions shines light on the types of commonsense knowledge that language models capture well.

Object tracking is challenging as target objects often undergo drastic appearance changes over time. Recently, adaptive correlation filters have been successfully applied to object tracking. However, tracking algorithms relying on highly adaptive correlation filters are prone to drift due to noisy updates. Moreover, as these algorithms do not maintain long-term memory of target appearance, they cannot recover from tracking failures caused by heavy occlusion or target disappearance in the camera view. In this paper, we propose to learn multiple adaptive correlation filters with both long-term and short-term memory of target appearance for robust object tracking. First, we learn a kernelized correlation filter with an aggressive learning rate for locating target objects precisely. We take into account the appropriate size of surrounding context and the feature representations. Second, we learn a correlation filter over a feature pyramid centered at the estimated target position for predicting scale changes. Third, we learn a complementary correlation filter with a conservative learning rate to maintain long-term memory of target appearance. We use the output responses of this long-term filter to determine if tracking failure occurs. In the case of tracking failures, we apply an incrementally learned detector to recover the target position in a sliding window fashion. Extensive experimental results on large-scale benchmark datasets demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods in terms of efficiency, accuracy, and robustness.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司